Solution and Matrix Photochemistry of (η-Cyclopentadienyl)bis(ethene)rhodium

David M. Haddleton and Robin N. Perutz

Department of Chemistry, University of York, York YO1 5DD, U.K.

Solution photolysis of $(\eta$ -C₅H₅)Rh(C₂H₄)₂ leads to substitution of ethene in the presence of donor ligands, and to oxidative addition with R₃SiH (R = Me or Et); photolysis in inert matrices causes reversible loss of ethene, but in reactive matrices substitution by N₂ and CO takes place.

The most potent of the recently discovered photochemical activators of alkane C-H bonds are $(\eta$ -C₅R₅)M(CO)₂ and $(\eta$ -C₅Me₅)MH₂(PMe₃) (R = Me or H; M = Rh or Ir).^{1,2} Matrix isolation has proved an effective method of demonstrating methane activation by $(\eta$ -C₅R₅)M(CO)₂, but the postulated intermediates, $(\eta$ -C₅R₅)MCO, could not be detected convincingly.^{1c} However, several lines of evidence point to $(\eta$ -C₅R₅)ML intermediates in these reactions.¹⁻³ The mechanism of Rh-catalysed Si-H bond activation has also been examined in detail, leading to the postulation of such reactive intermediates as $(\eta$ -C₅Me₅)Rh(SiEt₃)(C₂H₄)H.⁴ Indeed, [M](C₂H₄)(SiR₃)H complexes are usually postulated as intermediates in hydrosilation reactions, but have rarely, if ever, been observed.

Following successful matrix photolysis of $(cp)_2W(C_2H_4)$ ($cp = \eta$ -C₅H₅) to form the C-H activator, $(cp)_2W$, ⁵ we have examined the photochemistry of $(cp)Rh(C_2H_4)_2$ (1) in solution and in matrices. Although we lose the advantages associated with matrix-isolated metal carbonyls, ^{1c} the characteristic i.r. absorptions of C₂H₄ assist in product identification. Complex (1) undergoes thermal substitution by donor ligands such as PPh₃ and Me₂SO only above 115 °C;^{6,7} at these

Scheme 1. Solution photochemistry of $(cp)Rh(C_2H_4)_2$.

temperatures it also activates arene C-H bonds.⁸ We have discovered an extensive photochemistry of (1) and have used this to characterise stable complexes associated with hydrosilation and the first d^8 (cp)RhL intermediate.

Photolysis ($\lambda > 290$ nm) of (1) at 25 °C in benzene or toluene the presence of donor ligands butadiene, PPh₃, and Me₂SO leads to substitution of one or both ethene ligands and formation of known complexes (2)—(5) (Scheme 1).^{†7,9,10} On photolysis of (1) in the presence of Et₃SiH, hydrosilation products Et₄Si and CH₂=CHSiEt₃ (g.c.-mass spectrometric and n.m.r. identification), and two rhodium hydrides are formed. The major hydride product was identified as (cp)Rh(SiEt₃)(C₂H₄)H (**6b**) by detailed n.m.r. studies (including 2D n.m.r.); the minor product is assigned provisionally to the Rh^V complex *trans*-(cp)Rh(SiEt₃)₂H₂ (7b) [compare the established (η -C₅Me₅) analogue].¹¹ The proportion of (7b) increased with the ratio of Et₃SiH to (1). Use of Me₃SiH led to EtSiMe₃, CH₂=CHSiMe₃ and methyl analogues of the hydrides (**6a**) and (**7a**) (Scheme 1).[†]

The matrix photochemistry ($\lambda > 200 \text{ nm}$) of (1) also reveals substitution reactions. In N₂ matrices, one ethene is replaced forming the dinitrogen complex (8). Both ethene ligands may be substituted sequentially by CO in CO matrices; more control is obtained in 5% CO-Ar matrices. The products (8)—(10) and expelled ethene¹² are identified by i.r. spectro-

[†] Selected spectroscopic data for (2)—(7), not overlapping with published data. N.m.r. spectra were recorded at 400 MHz (¹H). The JMOD method for ¹³C n.m.r. studies is described in ref. 15. (2): n.m.r. ¹³C (JMOD, C_6D_6): δ 87.8 (d, J 2.9 Hz, C_5H_5), 77.5 (d, J 7.5 Hz, CH₂CH), and 33.5 (d, J 16.3 Hz, CH₂CH).

(3): n.m.r. ${}^{31}P{}^{1}H{}(C_6D_6)$: δ 59.4 (d, J 210 Hz).

(4): n.m.r. ${}^{31}P{}^{1}H{}^{1}$ (C₆D₆): δ 57.3 (d, J 222 Hz).

(5): n.m.r. ¹H (C₆D₅CD₃): δ 4.85 (d, 5H, J 0.8 Hz, C₅H₅), 2.85 ([AM]₂X multiplet, 2H, C₂H₄), 2.42 (s, 6H, Me), and 2.16 ([AM]₂X multiplet, 2H, C₂H₄); ¹³C (JMOD, C₆D₅CD₃): δ 86.5 (d, J 3.3 Hz, C₅H₅), 56.6 (s, Me), and 32.9 (d, J 15.8 Hz, C₂H₄); i.r. (Nujol) v 1315(w), 1177(m), 1173(m), 1097(s), 1080(sh), 913(m), 790(m), and 687(m) cm⁻¹; mass spec. *m*/*z*: 274 (25%, *M*⁺), 246 (79%, *M*⁺-C₂H₄), 231 (43%, *M*⁺-C₃H₇), and 168 (100%, *M*⁺-C₄H₁₀SO). Satisfactory microanalyses were obtained.

(6a): n.m.r. ¹H ($C_6D_5CD_3$): δ 4.92 (t, 5H, J 0.5 Hz, C_5H_5), 2.39 (br., 4H; sharpens at 353 K and 80 MHz to δ 2.21, d, J 2.1 Hz, C_2H_4), 0.29 (s, 9H, Me), and -14.84 (d, 1H, J 32 Hz, RhH); ¹³C (JMOD, $C_6D_5CD_3$): δ 90.1 (d, J 2.8 Hz, C_5H_5) and 34.8 (d, J 12.8 Hz, C_2H_4).

(6b): n.m.r. ¹H (C₆D₆): δ 4.95 (t, 5H, J 0.6 Hz, C₅H₅), 2.32 (br., 4H; sharpens at 80 MHz to 2.28, d, J 1.7 Hz, C₂H₄), 1.04 (t, 9H, J 7.8 Hz, SiCH₂CH₃), 0.69 (q, 6H, J 7.8 Hz, SiCH₂CH₃), and -14.87 (d, 1H, J 33.2 Hz, RhH); ¹³C (JMOD, C₆D₆): δ 89.4 (d, J 3 Hz, C₅H₅) and 31.7 (d, J 11 Hz, C₂H₄, J_{CH} 160 Hz); ²⁹Si(JMOD, C₆D₆): δ 41.6 p.p.m. (d, J 22.2 Hz, RhSi); mass spec. m/z: 312 (4%, M⁺), 284 (46%, M⁺-C₂H₄), 282 (13%, M⁺-C₂H₆), 254 (100%, M⁺-C₄H₁₀), 252 (38%, M⁺-C₄H₁₂), 226 (44%, M⁺-C₆H₁₄), 196 (60%, M⁺-C₈H₂₀) and M⁺-SiC₆H₁₆), and 168 (41%, M⁺-SiC₈H₂₀).

(7a): n.m.r. ${}^{1}H$ (C₆D₅CD₃): δ 4.89 (s, 5H, C₅H₅), 0.09 (s, 18H, CH₃), and -13.87 (d, 2H, J 40 Hz, RhH₂).

(7b): n.m.r. ¹H (C_6D_6): δ 4.99 (s, 5H, C_5H_5), 1.05 (t, 18H, J 7.7 Hz, CH₂CH₃), 0.78 (q, 12H, J 7.7 Hz, CH₂CH₃), and -14.16 (d, 2H, J 38.3 Hz, RhH₂); ¹³C (JMOD, C_6D_6): δ 90.5 (br. s, C_5H_5), 14.47 (s, CH₂), and 9.75 (s, Me).

Scheme 2. Matrix photochemistry of $(cp)Rh(C_2H_4)_2$.

scopy (Scheme 2).‡ Photolysis of (1) in Ar or CH₄ matrices [most effectively with λ 228.8 nm, coinciding with the most intense absorption of (1) at 231 nm], leads to limited yields of ethene and a product (11) with a new band in the CH deformation region of co-ordinated ethene, a new cp mode, and a u.v. absorption to long wavelength of the absorptions of (1) (Figure 1).‡ As with many co-ordinatively unsaturated metal carbonyls,¹³ the reaction is reversed by irradiation into the tail of this band (λ 436 nm). Photolysis of (η -C₅D₅)Rh(C₂D₄)₂⁸ in a CH₄ matrix gave C₂D₄ and shifted bands assigned to [²H₉]-(11).‡ The reversible photoproduction of ethene demonstrates that (11) must be assigned as the co-ordinatively unsaturated (cp)Rh(C₂H₄) (Scheme 2), rather than an isomer of (1). Dimerisation can be excluded both from the reversibility of the reaction and the dilution of the matrix.

These experiments demonstrate: (i) the photo-sensitivity of $(cp)Rh(C_2H_4)_2$ and the synthetic utility of photolysis for substitution of a strongly bound ethene ligand; (ii) the oxidative addition of SiH bonds leading to hydrosilation products and (6), an analogue of the postulated intermediate in hydrosilation reactions of $(\eta-C_5Me_5)Rh$ complexes⁴§ (see

[‡] Matrix spectroscopic data for (8)—(11). (8) i.r., ${}^{14}N_2 \text{ matrix}$, v 2180 cm⁻¹ [v(NN)]; ${}^{14}N_2/{}^{15}N_2$ (3/2) matrix, v 2180 and 2107 cm⁻¹ [v(${}^{14}N^{14}N$), v(${}^{15}N^{15}N$)]. (9): i.r., CO matrix, v 1989 and 556 cm⁻¹. (10): i.r., CO matrix, v 2050, 1989, 575, 526, and 499 cm⁻¹. (11): i.r., Ar matrix, v 1163 and 777 cm⁻¹; u.v., Ar matrix, λ 249, 292, and 363 nm; i.r., CH₄ matrix, v 1169, 1009(?), and 783 cm⁻¹; u.v., CH₄ matrix, λ 300 and 372 nm. [²H₉]-(11): i.r., CH₄ matrix, v 937 and 592 cm⁻¹.

Figure 1. Above. (a) I.r. spectrum of (1) in CH₄ matrix at 16 K (180 min deposition, sublimation temperature 273 K, 5.3 mmol CH₄); (b) i.r. spectrum at 12 K of sample obtained by alternate deposition of (1) with CH₄ and Cd arc (λ 228.8 nm) photolysis showing product bands due to (11) and C₂H₄ (3 periods alternating 60 min deposition and 60 min photolysis followed by 300 min photolysis, $x = CH_3D$, y = impurity on outer window). Below. U.v. spectrum of (1) in Ar matrix at 12 K before and after 1140 min Cd arc photolysis. The broken line shows the difference spectrum with ×10 ordinate expansion, peaks due to (11), troughs due to (1).

also the addition of R_3SiH to co-ordinatively unsaturated metal carbonyls);¹⁴ (iii) reversible formation of co-ordinatively unsaturated d⁸ (cp)Rh(C₂H₄) in inert matrices.

This complex is presumed to be an intermediate in the other photo-reactions of (1) (Schemes 1, 2) and has been postulated as an intermediate in the thermal reactions of (1).^{6–8} It is closely related to the hypothetical C–H activating intermediates, *e.g.* (cp)RhCO.^{1–3} We note the absence of evidence for CH₄ activation by (1) as might have been observed, *e.g. via* v(Rh–H).

This work has been assisted by an equipment grant from the S.E.R.C., by the S.E.R.C. high-field n.m.r. service at Sheffield University, by loans of i.r. (Prof. R. Hester) and u.v. spectrometers (Perkin-Elmer) and by a loan of rhodium salts (Johnson Matthey). We are particularly grateful to Prof. P. M. Maitlis and Dr. Z. Kafafi for discussions and for disclosing results prior to publication.

Received, 31st May 1985; Com. 752

References

 (a) J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3724; (b) J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, *ibid.*, 1983, 105, 7190; (c) A. J. Rest, I. Whitwell, W. A. G. Graham, J. K. Hoyano, and A. D. McMaster, J. Chem. Soc., Chem. Commun., 1984, 624.

- A. H. Janowicz and R. G. Bergman, J. Am. Chem. Soc., 1982, 104, 352; 1983, 105, 3929; M. J. Wax, J. M. Stryker, J. M. Buchanan, C. A. Kovac, and R. G. Bergman, *ibid.*, 1984, 106, 1121; R. A. Periana and R. G. Bergman, *Organometallics*, 1984, 3, 508.
- 3 W. D. Jones and F. J. Feher, Organometallics, 1983, 2, 563; J. Am. Chem. Soc., 1984, 106, 1650; 1985, 107, 620.
- 4 A. Millan, M. J. Fernandez, P. Bentz, and P. M. Maitlis, J. Mol. Catal., 1984, 26, 89.
- 5 J. Chetwynd-Talbot, P. Grebenik, and R. N. Perutz, Inorg. Chem., 1982, 21, 3647.
- 6 R. Cramer and L. Seiwell, J. Organomet. Chem., 1975, 92, 245.
- 7 R. Cramer, J. Am. Chem. Soc., 1972, 94, 5681.
- 8 L. Seiwell, J. Am. Chem. Soc., 1974, 96, 7134.
- 9 S. M. Nelson, M. Sloan, and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1973, 2195.
- 10 Y. Yamazaki and N. Hagihara, Bull. Chem. Soc. Jpn., 1974, 44, 2260; A. J. Oliver and W. A. G. Graham, Inorg. Chem., 1971, 10, 1165.
- 11 M. J. Fernandez, P. M. Bailey, P. O. Bentz, J. S. Ricci, T. F. Koetzle, and P. M. Maitlis, J. Am. Chem. Soc., 1984, 106, 5458.
- 12 A. J. Barnes and J. D. R. Howells, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 532.
- 13 See, e.g., R. N. Perutz and J. J. Turner, J. Am. Chem. Soc., 1975, 97, 4791.
- 14 R. H. Hill and M. S. Wrighton, Organometallics, 1985, 4, 413.
- 15 C. Le Cocq and J. Lallemand, J. Chem. Soc., Chem. Commun., 1981, 150.