The Synthesis of Electron-rich η -Cyclopentadienyl Trimethylphosphine Complexes of Tungsten

Malcolm L. H. Green and Gerard Parkin

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

The new compounds $W(\eta^4-C_5H_5R)(PMe_3)_3H_2$, (R = H, CHPh₂), $[W(\eta-C_5H_5)(PMe_3)_3H_2][BF_4]$, $W(\eta-C_5H_4R)(PMe_3)_3H$, $W(\eta-C_5H_5)(PMe_3)_2H_3$, and $W(\eta-C_5H_4R)(PMe_3)H_5$ (R = H, Et) are described; $W(\eta-C_5H_4Et)(PMe_3)_3H$ reacts with C_5H_6 under photolysis to give the mixed-ring compound $W(\eta-C_5H_5)(\eta-C_5H_4Et)H_2$.

Mono(η -cyclopentadienyl)-tertiary phosphine compounds have an extensive and varied chemistry¹ and recently have been relevant to important reactions such as alkane carbonhydrogen bond activation,^{2,3} and Ziegler-Natta catalysis.⁴ Mono(η -cyclopentadienyl) complexes of tungsten⁵ are mainly restricted to those containing carbonyl or nitrosyl as co-ligands and this results in the formation of comparatively low energy tungsten centres. We recently described the formation of W(η -C₅H₅)(PMe₃)H₅(1) from tungsten atoms, cyclopentane, and PMe₃⁶ and here we describe a more convenient synthesis of (1) and of related compounds from the readily available trimethylphosphine-polyhydride complexes W(PMe₃)₃H₆,⁷ W(PMe₃)₄H₄,^{7,8} and W(PMe₃)₅H₂.⁸

The complex W(PMe₃)₃H₆ (2) reacts with cyclopentadiene at 60 °C to give the diene–dihydrido compound W(η^{4} -C₅H₆)(PMe₃)₃H₂ (3) as pale yellow crystals in 65% isolated yield. The compound (3) represents the first example of an (η^{4} -cyclopentadiene)tungsten compound.

Protonation of (3) with HBF₄·Et₂O results in loss of H₂ and formation of the η -cyclopentadienyl compound [W(η -C₅H₅)(PMe₃)₃H₂][BF₄] (4) in good yield. Presumably the formation of (4) involves an intramolecular migration of the endo hydrogen from the η -cyclopentadiene ligand of (3). Compound (4) is readily deprotonated by KH to give $W(\eta-C_5H_5)(PMe_3)_3H$ (5), which may be reprotonated by HBF₄ to give (4).

 $W(PMe_3)_5H_2$ (6) reacts with cyclopentadiene to give $W(\eta-C_5H_5)(PMe_3)_2H_3$ (7).⁶ Photolysis (in borosilicate apparatus with a 500 Watt medium pressure Hg lamp) of (7) under dihydrogen (2 atm) gives (1) in *ca*. 60% isolated yield. The sequence (6)-(7)-(1) gives the most convenient syntheses for (7) and (1).

The compound $W(\eta-C_5H_4Et)(PMe_3)_3H$ (8) has been synthesised from $W(PMe_3)_3H_6$ (2) and spiro[2.4]hepta-4,6diene.⁹ This compound reacts with H₂ (2 atm) under photolysis giving $W(\eta-C_5H_4Et)(PMe_3)H_5$ (9) in 45% isolated yield. The ¹H n.m.r. spectrum of the reaction mixture shows bands assignable to $W(\eta-C_5H_4Et)(PMe_3)_2H_3$ (10) at an intermediate stage of reaction.

In a separate study the photolysis of $W(PMe_3)_4H_4$ (11) with cyclopentadiene was monitored by ¹H n.m.r. spectroscopy. The data show the following products to be formed sequentially: (3), $W(\eta-C_5H_5)(PMe_3)_2H_3$ (7), $W(\eta-C_5H_5)(\eta^2-C_5H_8)(PMe_3)_2H$ (12),⁶ and finally $W(\eta-C_5H_5)_2H_2$ (13).¹⁰

Scheme 1. Reagents: i, $C_5H_6/80$ °C (65%); ii, $HBF_4 \cdot Et_2O$ (42%); iii, KH (21%); iv, $HBF_4 \cdot Et_2O$ (63%); v, $C_5H_6/65$ °C (16%); vi, H_2 (2.5 atm)/hv (61%); vii, $C_5H_6/110$ °C; viii, C_5H_6/hv .

or the photochemical reaction of (3) with cyclopentadiene.

The photolysis of (8) with cyclopentadiene gives the mixed-ring metallocene dihydride $W(\eta-C_5H_5)(\eta-C_5H_4Et)H_2$ (14) which reacts with CCl₄ to give the dichloride $W(\eta-C_5H_5)(\eta-C_5H_4Et)Cl_2$ (15). Both reactions occur in good yield and therefore provide a convenient entry to mixed-ring metallocene derivatives of tungsten.

The reaction of $W(PMe_3)_3H_6$ with 6,6-diphenylfulvene, $C_5H_4CPh_2$, occurs with reduction of the exocyclic-double bond giving the diphenylmethylcyclopentadiene derivative $W(\eta^4-C_5H_5CHPh_2)(PMe_3)_3H_2$ (16).

The new compounds (3), (4), (5), (9), (14), (15), and (16) have been characterised by microanalysis, mass spectroscopy, and detailed n.m.r. studies.[†] The proposed structures are shown in Schemes 1 and 2.

(3) W($\eta^{4-C_{5}}H_{6}$)(PMe₃)₃H₂ ¹H n.m.r. ([²H₆]benzene) 5.61 [1H, m, H_{exo} or H_{endo}], 3.98 [2H, br.s, 2 H₃ or 2 H₂], 3.38 [1H, d, J(H–H) 7.2, H_{endo} or H_{exo}], 1.53 [2H, br.s, 2 H₂ or 2 H₃], 1.38 [18H, d, J(P–H) 6.5, 2 PMe₃], 1.25 [9H, d, J(P–H) 6.8, PMe₃], -1.18 [1H, br.q, J_q(P–H) 45.0, W–H₆], -4.62 [1H, br., W–H_a]; ¹³C n.m.r. ([²H₆]benzene) 63.5 [d, J(C–H) 176, 2 C₃ or 2 C₂], 48.6 [tq, J_t(C–H) 127, J_q(P–C) 5, CH₂], 31.1 [d, J(C–H) 159, 2 C₂ or 2 C₃], 27.1 [dq, J_d(P–C) 29, J_q(C–H) 128, 2, PMe₃], 26.5 [dq, J_d(P–C) 24, J_q(C–H) 128, 1 PMe₃]; ³¹P{¹H} n.m.r. ([²H₆]benzene) -30.3 [2P, d, J(P–P) 12, J(P–W) 227, 2 PMe₃], -33.6 [1P, t, J(P–P) 12, J(P–W) 237, 1 PMe₃].

(4) $[W(\eta-C_5H_5)(PMe_3)_3H_2][BF_4]$ ¹H n.m.r. $([^2H_4]MeOH)$ 4.83 [5H, t, J 1.8, C_5H_5], 1.66 [27H, d, J(P-H) 10.5, 3PMe_3], 0.70 [1H, dq, J_d(H-H) 8.4, J_q(P-H) 50.0, W-H], -6.45 [1H, tt, J_d(P-H) 8.4, J_d(H-H) 8.4, J_t(P-H) 39.8, W-H]; ¹³C n.m.r. ([²H₄]MeOH) 83.3 [dt, ¹J_d(C-H) 181, ³J_t(C-H) 7, C_5H_5], 26.6 [dq, J_d(P-C) 35, J_q(C-H) 128, 2 PMe_3], 25.9 [dq, J_d(P-C) 32, J_q(C-H) 128, PMe_3]; ³¹P{¹H} n.m.r. ([²H₄]MeOH) -33.4 [2P, d, J(P-P) 16, J(P-W) 214, 2 PMe_3], -39.1 [1P, t, J(P-P) 16, J(P-W) 237, 1 PMe_3].

(5) $W(\eta-C_5H_5)(PMe_3)_3H^{-1}H^{-1}n.m.r. ([^{2}H_6]benzene) 4.39 [5H, s, C_5H_5], 1.43 [27H, m (virtual multiplet), J'(P-H) 5.7, 3 PMe_3], -10.61 [1H, q, J(P-H) 48.2, J(W-H) 46.0, W-H]; ¹³C n.m.r. ([^{2}H_6]benzene) 78.2 [d, C_5H_5], 33.2 [qm, 3 PMe_3]; ³¹P{¹H-Me} n.m.r. ([^{2}H_6]benzene) -31.4 [d, J(P-H) 48.2, J(P-W) 335, 3 PMe_3].$

(9) W(η -C₅H₄Et)(PMe₃)H₅ ¹H n.m.r. ([²H₆]benzene) 4.93 (2H, m, 2H_a or 2 H_b], 4.78 [2H, m, 2 H_b or 2 H_a], 2.39 [2H, q, J(H-H) 7.4, CH₂], 1.46 [9H, d, J(P-H) 9.8, PMe₃], 1.07 [3H, t, J(H-H) 7.4, CH₂CH₃], -3.71 [5H, d, J(P-H) 42.2, J(W-H) 42.8, 5W-H]; ¹³C n.m.r. ([²H₆]benzene) 110.0 [s, C_c], 80.5 [d, 2 C_a or 2 C_b], 78.3 [d, 2 C_b or 2 C_a], 29.4 [dq, J_d(P-C) 35.5, PMe₃], 23.2 [t, CH₂], 16.1 [q, CH₂CH₃], ³¹P¹H-Me} n.m.r. ([²H₆]benzene) -22.4 [sextet, J(P-W) 47, PMe₃].

(14) $W(\eta$ -C₅H₅)(η -C₅H₄Et)H₂ ¹H n.m.r. ([²H₆]benzene) 4.51 [2H, s, 2 H_a or 2 H_b], 4.37 [5H, s, C₅H₅], 4.17 [2H, s, 2 H_b or 2 H_a], 2.46 [2H, q, J(H–H) 7.5, CH₂], 1.17 [3H, t, J(H–H) 7.5, CH₂CH₃], -11.81 [2H, s, J(W–H) 74.4, 2W–H]; ¹³C n.m.r. ([²H₆]benzene) 103.8 [s, C_c], 74.0 [d, J(C–H) 177, 2 C_a or 2 C_b], 72.0 [dt, J_d(C–H) 180, J_t(C–H) 6, C₅H₅], 67.1 [d, J(C–H) 186, 2 C_b or 2 C_a], 63.5 [t, J(C–H) 128, CH₂], 15.9 [q, J(C–H) 126, CH₂CH₃].

(15) $W(\eta-C_5H_4Et)(\eta-C_5H_5)Cl_2 H n.m.r. ([^2H_6]Me_2SO) 5.57 [5H, s, C_5H_5], 5.54 [2H, m, 2 H_a or 2 H_b], 5.12 [2H, m, 2 H_b or 2 H_a], 2.34 [2H, q, J(H-H) 7.5, CH_2], 1.09 [3H, t, J(H-H) 7.5, CH_3].$

(16) $W(\eta^4-C_5H_5CHPh_2)(PMe_3)_3H_2^{-1}H^{-1}H^{-1}m.m.r.$ ([²H₆]Me₂CO) 7.36—7.18 [10H, m, 2 Ph], 5.35 [1H, s, H₅ or H₆], 4.82 [4H, m, 2 H₇ and 2 H₈], 1.75 [9H, d, J(P-H) 7.9, PMe₃], 1.55 [18H, d, J(P-H) 8.9, 2 PMe₃], 1.01 [1H, m, W-H_b], ca. 1.0 [1H, located by double resonance, H₆ or H₅], -5.84 [1H, dddt, $J_d(H-H)$ 1.0, $^{2}J_d(H_a-H_b)$ 9.5, $J_d(P-H)$ 7.0, J_t (P-H) 35.5, W-H_a]; ¹³C n.m.r. ([²H₆]Me₂CO) 145.1 [s, 2 C₄], 129.7 [d, 4 C₂ or 4 C₃], 129.3 [d, 4 C₃ or 4 C₂], 127.5 [d, 2 C₁], 88.3 [d, 2 C₇ or 2 C₈], 82.7 [d, C₆ or C₅], 75.2 [d, 2 C₈ or 2 C₇], 51.9 [d, C₅ or C₆], 26.4 [dq, $J_d(P-C)$ 35, 2 PMe₃], 25.6 [dq, $J_d(P-C)$ 31, PMe₃]; ³¹P{¹H} n.m.r. ([²H₆]Me₂CO) -33.4 [d, J(P-P) 16, J(P-W) 210, 2 PMe₃], -40.9 [t, J(P-P) 16, J(P-W) 239, PMe₃].

Scheme 2. Reagents: i, spiro[2.4]hepta-4,6-diene/80 °C (41%); ii, H₂ (2.5 atm)/hv (45%); iii, C₅H₄CPh₂/70 °C (10%); iv, C₅H₆/hv (50%); v, CCl₄ (83%).

We thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society for partial support and the S.E.R.C. for support (to G. P.).

Received, 27th June 1985; Com. 904

References

- 1 H. Werner, Angew. Chem., Int. Ed. Engl., 1983, 22, 927.
- 2 P. D. Grebenik, M. L. H. Green, and A. Izquierdo, J. Chem. Soc., Chem. Commun., 1981, 186.
- A. H. Janowicz and R. G. Bergman, J. Am. Chem. Soc., 1983, 105, 3929; W. D. Jones and F. J. Feher, *ibid.*, 1984, 106, 1650; Organometallics, 1983, 2, 562; J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3723; J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, *ibid.*, 1983, 105, 7190.
- 4 G. F. Schmidt and M. Brookhart, J. Am. Chem. Soc., 1985, 107, 1443.
- 5 R. Davis and L. A. P. Kane-Maguire, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 3, p. 1321.
- 6 M. L. H. Green and G. Parkin, J. Chem. Soc., Chem. Commun., 1984, 1467.
- 7 D. Lyons and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1985, 587.
- 8 M. L. H. Green, G. Parkin, C. Mingqin, and K. Prout, J. Chem. Soc., Chem. Commun., 1984, 1400; K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. Abdul-Malik, J. Chem. Soc., Dalton Trans., 1981, 1204.
- 9 J. A. Bandy, V. C. Gibson, C. E. Graimann, P. M. Hare, P. D. Grebenik, M. L. H. Green, and K. Prout, J. Chem. Soc., Dalton Trans., 1985, in the press.
- 10 M. L. H. Green, J. A. McCleverty, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1961, 4854.

⁺ Characterising data [δ , J in Hz, δ_P in p.p.m. relative to external P(O)(OMe₃)].