Origin of the So-called α -Effect

Robert F. Hudson,^a David P. Hansell,^a Saul Wolfe,^b and David J. Mitchell^b

^a Chemical Laboratory, University of Kent at Canterbury, Canterbury CT2 7NH, U.K.

^b Department of Chemistry, Queen's University, Kingston, Ontario, Canada

The α -effect is attributed primarily to the relative affinity of the α -nucleophile for the electrophilic centre under consideration compared to the proton affinity, as indicated by thermochemical data, and by calculations of HOMO's and charge distribution at the 4–31G and 6–311G* levels.

Many explanations have been given¹ of the abnormally high reactivity of certain nucleophiles (the so-called α -effect)² but the subject remains a matter of controversy.

We suggest here that the effect is thermodynamic in origin and is due to the differences in the affinities of nucleophiles for a particular electrophile relative to the proton. It was noted⁴ some years ago that the magnitude of the α -effect increases with the extent of bond formation in the transition state (as given by the Brönsted β). A simple extrapolation shows that the effect should be a maximum for complete bond formation.

Abnormally high affinities of HO_2^- and N-substituted hydroxamic acids towards carbon have been reported,⁵ and in the preceding communication we report that aromatic oximes, but not phenols of comparable pK_a form adducts with acyl isothiocyanates.

Equilibria can be treated by a classical thermodynamic argument⁶ as follows. Consider the equilibria (1)—(4), where N_1^- represents a 'normal' nucleophile, N_2^- an α -nucleophile,

and E = an electrophile. Each process is imagined to involve (i) desolvation, (ii) electron transfer, (iii) bond formation. Thus equation (5) is obtained, where ΔH_N^s is the solvation enthalpy of N⁻, E_N the electron affinity of N, and D_{N-E} the dissociation energy of the N–E bond. ΣE^+ represents energy terms for E which are constant when two nucleophiles are compared, and $\Sigma \Delta S$ is the net entropy change in the reaction, which can be neglected in the following treatment.

Applying equation (5) to equilibria (1)—(4) we have expression (6).

Thus an α -effect will be observed *in an equilibrium* when the relative proton affinity ΔD_{H-N} is greater than the relative affinity towards the electrophile ΔD_{E-N} . This is supported by the thermochemical calculations and *ab initio* calculations at the 4-31G level (see Table 1). From the estimated values of the affinities towards carbon and hydrogen from thermochemical data, we find that $\Delta D_{H-N} = \text{approx}$. ΔD_{C-N} for CH₃O⁻ and HCO₂⁻, two 'normal' nucleophiles of very different basicity.

Table 1. HOMO Energies,^a Mulliken charges q_{o} ,^b and calculated^c and experimental^d proton and methyl cation affinities (kcal mol⁻¹; 1 cal = 4.184 J) of some oxyanions.

	⁸ номо		P roton affinity		Methyl cation affinity		Electronic charge on oxygen (q_{o})	
	4-31G	6-311G*	4-31G	Exptl.	4-31G	Exptl.	4-31G	6-311G*
HO-	-0.0340	-0.0483	426.0	390.8	292.8	276.3	-1.144	-1.193
CH ₃ O- HO ₂ -	-0.0635 -0.0868	-0.0773 -0.0942	409.8 387.4	379.2 379.4	279.1 259.6	267.6 272.6	$-0.949 \\ -0.607$	-0.859 -0.614
FO ⁻ HCO ₂ -	-0.1371 -0.1510	-0.1514	360.5 360.0	345.2	235.4 229.8	233.1	-0.471 - 0.788	-0.457

^a In Hartrees.^b Units of electrons on the nucleophilic atom. ^c At 0 K, uncorrected for zero-point vibration. ^d $-\Delta H_{298}$ for the process N⁻ + A⁺ \rightarrow NA (A = H, C).

$$N_1^- + E^+ \stackrel{K_1}{\rightleftharpoons} N_1 - E \tag{1}$$

$$N_1^- + H^+ \rightleftharpoons N_1 - H \tag{2}$$

$$N_2^- + E^+ \rightleftharpoons N_2 - E \tag{3}$$

$$N_2^- + H^+ \rightleftharpoons N_2 - H \tag{4}$$

$$\Delta G^{\circ} = -RT \ln K = \Delta H_{\rm N}^{\rm S} + E_{\rm N} - D_{\rm N-E} + \Sigma E^{+} + T \Sigma \Delta S \quad (5)$$

v

$$RT \ln \frac{K_2}{K_1} - RT \ln \frac{K_2^{H}}{K_1^{H}} = (D_{H-N_1} - D_{H-N_2}) - (D_{E-N_1} - D_{E-N_2})$$

$$= \Delta D_{\rm H-N} - \Delta D_{\rm E-N} \tag{6}$$

However, $\Delta D_{\text{H-N}} - \Delta D_{\text{C-N}} = 4.8 \text{ kcal mol}^{-1}$ when CH₃O⁻ and HO₂⁻ are compared, corresponding to an α -effect of 10^{3.5} at 298 K. This may be compared with the experimental value⁷ of 10^{2.4} for the α -effect in the reaction of *p*-nitrophenyl acetate with HO₂⁻, where the value of β is found to be 0.65. Thus for complete bond formation, a value of 10^{3.6} would be found for the α -effect, if this is assumed to be proportional to β .

Examination of the MO data in Table 1 shows that a decrease in ε_{HOMO} (*i.e.* an increase in ionisation potential) of a 'normal' nucleophile is accompanied by a decrease in q_0 , the charge on the nucleophilic atom. However, substitution at the nucleophilic atom to form an α -nucleophile, *e.g.* HO₂⁻,

produces a large decrease in q_o for a smaller decrease in ε_{HOMO} . For example, ε_{HOMO} for HCO_2^- is considerably *less* than ε_{HOMO} for HO_2^- but the negative charge, q_o is greater for the HCO_2^- ion.

These calculations suggest that the increased value of $\Delta D_{\text{H-N}}$ relative to $\Delta D_{\text{C-N}}$ may be explained in terms of bond polarities. The abnormally large decrease in negative charge q_{0} (for HO₂⁻) reduces the Coulombic contributions to the H–O and C–O bonds.³ This reduction is greater for the short, highly polar O–H bond than for the C–O bond, *i.e.* $\Delta D_{\text{H-N}} > \Delta D_{\text{C-N}}$. It follows therefore that HO₂⁻ (and other α -nucleophiles) has a greater relative affinity than HO⁻ (or CH₃O⁻) for carbon. This is equivalent to saying that HO⁻ (or CH₃O⁻) has an abnormally high affinity for the proton.

Received, 28th May 1985; Com. 742

References

- R. F. Hudson, 'Chemical Reactivity and Reaction Paths,' Wiley, New York, 1974, p. 203; S. Hoz, J. Org. Chem., 1982, 47, 3545; M. Laloi-Diard, J.-F. Verchere, P. Gosselin, and F. Terrier, Tetrahedron Lett., 1984, 25, 1267.
- 2 J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc., 1962, 84, 16.
- 3 R. F. Hudson and F. Filippini, Chem. Commun., 1972, 522.
- 4 J. E. Dixon and T. C. Bruice, J. Am. Chem. Soc., 1972, 94, 2052. 5 J. Hine and R. D. Weimar, J. Am. Chem. Soc., 1965, 87, 3387;
- J. Gerstein and W. P. Jencks, *ibid.*, 1964, **86**, 4655. 6 R. F. Hudson, *Chimia*, 1962, **16**, 173.
- 7 W. P. Jencks and M. Gilchrist, J. Am. Chem. Soc., 1968, 90, 2622.