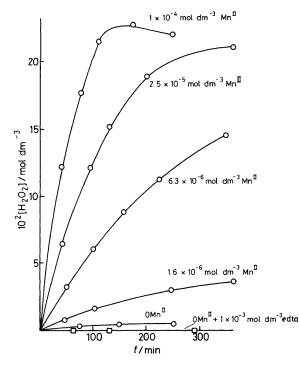
The Production of Hydrogen Peroxide from Dioxygen and Hydroxylamine catalysed by Manganese Complexes

Dennis F. Evans* and Tippu S. Sheriff

Inorganic Chemistry Laboratories, Imperial College, London SW7 2AY, U.K.

The Mn^{II}/4,5-dihydroxybenzene-1,3-disulphonate (Tiron) system catalyses the production of hydrogen peroxide from dioxygen and hydroxylamine in the pH range 7.5—8.6; concentrations of hydrogen peroxide >0.2 mol dm⁻³ and turnover numbers $[H_2O_2]/[Mn^{II}] > 10^4$ can be obtained.


The production of H_2O_2 when O_2 reacts with systems containing transition metal ions or complexes has been observed quite frequently,¹ although in the majority of cases the H_2O_2 rapidly disappears by further reaction or by catalytic decomposition. In the presence of a reducing substrate, catalytic production of H_2O_2 is possible. Although such a process is unlikely to compete with that used industrially (the reaction of O_2 with an alkylanthrahydroquinone)² it might be useful in the formulation of liquid laundry detergents, where the H_2O_2 desirable for bleaching could be generated from atmospheric O_2 . A number of enzyme systems which produce H_2O_2 are known, for example the copper-containing galactose oxidase,³ which catalyses the oxidation of galactose and related compounds by O_2 , with the O_2 being reduced to H_2O_2 .[†]

We report that the Mn^{II}/4,5-dihydroxybenzene-1,3disulphonate (Tiron) system is an efficient catalyst for the reduction of O_2 to H_2O_2 by NH₂OH in the pH range 7.5—8.6. In strongly alkaline solutions, NH₂OH reacts with O₂ to give H₂O₂.⁴ The main products formed from the NH₂OH are OONO⁻ and NO₂⁻. The reactive species is the anion NH₂O⁻.⁵ Since the pK_a of NH₂OH is 13.7,⁵ this reaction was quite insignificant in the present work. H₂O₂ is also formed from O₂ and NH₂OH in the presence of Co^{II} tetrasulpho-phthalocyanine at pH 11.6–12.3.⁶

The results obtained[‡] are shown in Figure 1. In the absence

⁺ In organisms, these enzymes are normally associated with catalase. which rapidly decomposes the H₂O₂.

[‡] Solutions of NH₂OH₂+Cl⁻ (AnalaR). Tiron, and *N*-2hydroxyethylpiperazine-*N*'-3-propanesulphonic acid buffer were adjusted to the desired pH with AristaR NaOH(aq). The water was purified by passage through a mixed-bed ion-exchange resin. The Tiron and *N*-2-hydroxyethylpiperazine-*N*'-3-propanesulphonic acid (both from B.D.H. Ltd.) were recrystallized from aqueous ethanol. O₂ was passed through the rapidly stirred solutions at *ca*. 0.7 l min⁻¹. H₂O₂ was analysed iodometrically, and NO₂⁻ colourimetrically using sulphanilic acid and 1-aminonaphthalene.⁷ After the maximum amount of H₂O₂ had been obtained, when the concentration of NH₂OH was < 0.001 mol dm⁻³ (Ni¹¹/butane-2,3-dione monoxime test paper⁸), [NO₂⁻] + [NO₃⁻] was determined by reduction to NH₃ with Devarda's alloy.

Figure 1. The production of H_2O_2 in the Mn^{II}/Tiron/NH₂OH system in the presence of O_2 at 20 °C and different concentrations of Mn^{II}. In all runs, the [Tiron] was 6×10^{-4} mol dm⁻³, the initial [NH₂OH] was 0.5 mol dm⁻³, and the pH was 8.0 (0.1 mol dm⁻³ *N*-2hydroxyethylpiperazine-*N*'-3-propanesulphonate buffer).

of added Mn^{II}, slow formation of H₂O₂ was observed. This reaction was virtually quenched by the addition of ethylenediaminetetra-acetate (edta), and presumably arises from catalysis by trace metal ions. Since Cu^{II}, Fe^{II}, and Co^{II} were much less efficient as catalysts than Mn^{II}, adventitious traces of Mn^{II} may be responsible. (In the presence of Mn^{II} but without Tiron, negligible amounts of H₂O₂ were produced.) With 0.50 mol dm⁻³ NH₂OH, concentrations of H₂O₂ of > 0.2 mol dm⁻³ could be obtained. In the pH range used here, any OONO⁻ formed would rapidly isomerize to NO₃^{-.9} However, only small amounts of NO₃⁻ (< 0.02 mol dm⁻³) and NO₂⁻⁻ (< 0.005 mol dm⁻³) were produced. The main

reaction product from the NH₂OH is probably N₂O. Me-NHOH also produced H_2O_2 , and the rate of production was appreciably faster than with NH₂OH. Tiron could be replaced by 2,3-dihydroxynaphthalene-6-sulphonic acid (sodium salt), but not by catechol.

The $Mn^{II}/Tiron$ system, which contains 1:1, 2:1, and 3:1 complexes of the Tiron tetra-anion with Mn^{II} ,¹⁰ is rapidly oxidized by O₂ (but not H₂O₂) to a green Mn^{III} species, which seems to be the same as that reported by Sawyer *et al.*¹¹ and formed from 'manganic acetate,' and Tiron in alkaline solution. Although this reaction with O₂ produces H₂O₂, it can hardly be an important feature of the catalytic process, since in an Ar atmosphere the green Mn^{III} species is only slowly reduced by NH₂OH. It seems likely that the catalytic species involves Mn^{III} . The NH₂OH (or MeNHOH) could coordinate to the metal (possibly with loss of a proton) and become activated towards reaction with O₂. The rate of formation of H₂O₂ in air was *ca.* 1/5 that in O₂, indicating that O₂ is involved in the rate-determining step. This mechanism is similar to that suggested for the action of galactose oxidase.¹²

Received, 15th May 1985; Com. 670

References

- M. M. Taqui Khan and A. E. Martell, 'Homogeneous Catalysis by Metal Complexes. Vol. 1,' Academic Press, New York, 1974; D. T. Richens and D. T. Sawyer, J. Am. Chem. Soc., 1979, 101, 3681.
- 2 W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, 'Hydrogen Peroxide,' Reinhold Publishing Corporation, New York, 1955.
- 3 B. G. Malmstrom, L. E. Andreasson, and B. Reinhammer, 'The Enzymes, Vol. 12,' ed. P. D. Boyer, Academic Press, New York, 1975, p. 507.
- 4 M. N. Hughes and H. G. Nicklin, J. Chem. Soc. A, 1971, 164.
- 5 M. N. Hughes, H. G. Nicklin, and K. Shrimanker, J. Chem. Soc. A, 1971, 3485.
- 6 D. M. Wagnerova, E. Schwertnerova, and J. Veprek-Siska, Coll. Czech. Chem. Commun., 1974, **39**, 3036.
- 7 E. F. Elstner and A. Heupel, Anal. Biochem., 1976, 70, 616.
- 8 F. Feigl, 'Spot Tests in Inorganic Analysis,' 5th edn., Elsevier, New York-Amsterdam, 1958.
- 9 M. N. Hughes and H. G. Nicklin, J. Chem. Soc. A, 1968, 450.
- 10 P. Scharff and R. Genin, Anal. Chim. Acta, 1975, 78, 201.
- 11 K. D. Magers, C. G. Smith, and D. T. Sawyer, *Inorg. Chem.*, 1978, **17**, 515.
- 12 G. Malmstrom, Annu. Rev. Biochem., 1982, 51, 42.