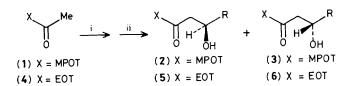
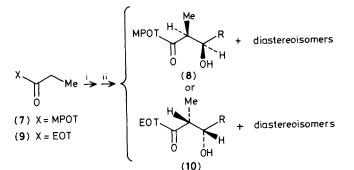
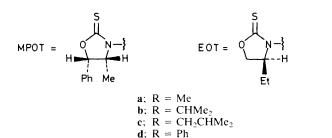
Use of Chiral 1,3-Oxazolidine-2-thiones in the Diastereoselective Synthesis of Aldols

Yoshimitsu Nagao,** Shozo Yamada,* Toshio Kumagai,* Masahito Ochiai,* and Eiichi Fujita*b


^a Institute for Chemical Research, Kvoto University, Uji, Kvoto 611, Japan


^b Osaka College of Pharmacy, 10–65 Kawai 2-Chome, Matsubara 580, Japan


A useful diastereoselective synthesis of aldols using chiral 3-acyl-1,3-oxazolidine-2-thiones, (1), (4), (7), and (9), is reported and its application to the synthesis of a chiral azetidinone (11) is described.

In a series of studies on the development of new reactions using functional five-membered heterocycles,¹ we have prepared chiral 4(R)-methyl-5(S)-phenyl- and 4(S)-ethyl-1,3oxazolidine-2-thiones,² 4(R),5(S)-MPOT and 4(S)-EOT, respectively. We now report a useful stereoselective synthesis of aldols³ employing 4(R),5(S)-MPOT and 4(S)-EOT as chiral reagents and tin(II) trifluoromethanesulphonate and N-ethylpiperidine as enolating reagents.⁴

Thus, N-ethylpiperidine (1.6 mmol) was added to a suspension of tin(11) trifluoromethanesulphonate (1.5 mmol) in anhydrous CH_2Cl_2 (3.3 ml) at -50 °C under Ar. After addition of a solution of 3-acetyl-4(R),5(S)-MPOT (1) (1 mmol) in CH_2Cl_2 (1.2 ml), the mixture was stirred at *ca.* -50 to -40 °C for 3 h to complete the tin–enolate formation. Then, a solution of isobutyraldehyde (1.2 mmol) in CH_2Cl_2 (1.2 ml) was added at -78 °C and the mixture was stirred at

Scheme 1. Reagents and conditions: i, $Sn(O_3SCF_3)_2$ -N-ethylpiperidine, CH_2Cl_2 , ca. -50 to -40 °C; ii, RCHO -78 °C.

the same temperature for 20 min. Usual work-up⁴ of the reaction mixture gave a mixture of diastereoisomers (2b) and (3b), the ratio of which was readily checked by h.p.l.c. equipped with a u.v. detector.² Chromatographic separation of each diastereoisomer gave optically pure compounds (2b) $\{68\% \text{ yield, colourless oil, } [\alpha]_{D^{25}} + 36.60^{\circ} (c \ 1.0, \ CHCl_3)\}$ and (3b) {7.3% yield, colourless oil $[\alpha]_D^{25} + 106.05^\circ$ (c 0.48, CHCl₃). Similar chiral aldol reactions using compound (1), 3-acetyl-4(S)-EOT (4), 3-propanoyl-4(R),5(S)-MPOT (7), and 3-propanoyl-4(S)-EOT (9) gave also fairly high diastereoselectivity (see Scheme 1 and Table 1). Absolute configuration was confirmed by comparison of the physical data of β -hydroxycarboxylic acids (or their methyl esters) derived from the corresponding aldol products with those of the authentic samples⁵ or by chemical correlation with a compound⁶ whose stereochemistry had been confirmed by X-ray analysis.

All chiral recognition data listed in Table 1 can be rationalised by an assumed transition state (I). Comparison of this transition state with that in the Evans case (II)⁷ shows a remarkable contrast.

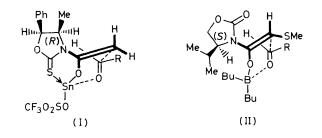
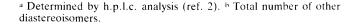
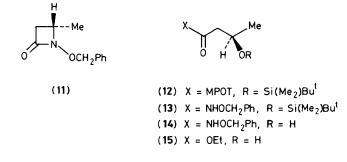




 Table 1. Diastereoselective synthesis of aldols using chiral 3-acyl-1.3thiazolidine-2-thiones (AOT).

		Diastereoisomer			Isolated yield
AOT	Aldehyde	selectivity ^a		itya	of major product/%
(1)	MeCHO	76.3	:	23.7	62(2a)
		(2a)		(3 a)	
(1)	Me ₂ CHCHO	89.0	:	11.0	68(2b)
		(2b)		(3b)	
(1)	Me ₂ CHCH ₂ CHO	81.8	:	18.2	64(2c)
		(2c)		(3c)	
(4)	Me ₂ CHCHO	91.4	:	8.6	60(6b)
. ,	-	(6b)		(5b)	
(7)	Me ₂ CHCHO	90.Ś	:	9.5 ^b	71(8b)
. ,	-	(8b)			
(7)	PhCHO	83.7	:	16.3 ^b	65(8d)
· /		(8d)			
(9)	Me ₂ CHCHO	85.6	:	14.4 ^b	74(10b)
× /	-	(10b)			```

Finally, we applied this aldol reaction to the synthesis of a chiral azetidinone (11).³ Alcohol (2a), after protection to give (12) (83.9% yield), was converted into amide (13) by aminolysis (56.8%) with *O*-benzylhydroxylamine in CHCl₃. Treatment of (13) with Bun₄N+F⁻ in tetrahydrofuran (THF) gave *N*-benzyloxy-3(*R*)-hydroxybutyramide (14) {m.p. 92–93 °C (AcOEt-hexane), $[\alpha]_D^{17}-28.0^\circ$ (*c* 0.46, CHCl₃)} in 81.5% yield. Compound (14) was allowed to react with diethyl azodicarboxylate and triphenylphosphine⁸ in THF to afford optically pure 1-benzyloxy-4(*S*)-methyl-2-azetidinone (11) {colourless oil, $[\alpha]_D^{17}-26.3^\circ$ (*c* 1.0, CHCl₃)} in 84.1% yield.

The absolute configuration and optical purity of (11) were confirmed by chemical correlation with ethyl 3(R)-hydroxybutyrate (15).

Received, 10th June 1985; Com. 804

References

- 1 Y. Nagao, T. Ikeda, M. Yagi, E. Fujita, and M. Shiro, J. Am. Chem. Soc., 1982, 104, 2079; Y. Nagao, T. Miyasaka, K. Seno, E. Fujita, D. Shibata, and E. Doi, J. Chem. Soc., Perkin Trans. 1, 1984, 183; and references cited therein.
- 2 Y. Nagao, T. Kumagai, S. Yamada, E. Fujita, Y. Inoue, Y. Nagase, S. Aoyagi, and T. Abe, *J. Chem. Soc.*, *Perkin Trans. 1*, in the press.
- 3 Orally reported at the '16th Congress of Heterocyclic Chemistry,' Osaka, Japan, October 1984.
- 4 N. Iwasawa and T. Mukaiyama, Chem. Lett., 1983, 297.
- 5 D. A. Evans, J. Bartroli, and T. L. Shih, J. Am. Chem. Soc., 1981, 103, 2127.
- 6 Y. Nagao, Y. Hagiwara, T. Kumagai, S. Yamada, T. Inoue, M. Shiro, M. Ochiai, and E. Fujita, to be published.
- 7 D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis, D. J. Mathre, and J. Bartroli, *Pure Appl. Chem.*, 1981, **53**, 1109.
- 8 Cf. P. G. Mattingly, J. F. Kerwin, Jr., and M. J. Miller, J. Am. Chem. Soc., 1979, 101, 3983 and ref. 2.