Migratory Insertion of Monoborane into the Uranium–Carbon σ-Bond of Tricyclopentadienyl(alkyl)uranium(ιν) Complexes

Gilberto Rossetto,* Marina Porchia,* Franco Ossola,* Pierino Zanella,** and R. Dieter Fischerb*

Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R., Corso Stati Uniti, 35100 Padova, Italy
 Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6,
 2000 Hamburg 13. Federal Republic of Germany

 $U(cp)_3R$ ($cp = \eta^5$ -cyclopentadienyl, R = Me or Et) reacts in toluene solution at room temperature with a number of appropriately labile adducts $L \cdot BH_3$ ($L = BH_3$, tetrahydrofuran or Me_2S) to give $U(cp)_3BH_4$ via the non-isolable, but spectroscopically well identified, primary insertion product $U(cp)_3(H_3BR)$; evidence of a corresponding, rather effective, insertion of the resulting BH_2R unit into U-C bonds is also apparent.

Recently, tricyclopentadienyluranium(IV) alkyls have been shown readily to insert e.g. carbon monoxide1 and organic isocyanides,^{2,3} respectively, into their U-C σ-bonds [reaction (1)]. Corresponding insertion reactions may be envisaged with a variety of other unsaturated molecules.4 We now focus on monoborane, BH₃, as the first example of an unsaturated agent devoid of a double or triple bond. When clear solutions of $U(cp)_3R$ (R = Me or Et; $cp = \eta^5 - C_5H_5$) in toluene are stirred at room temperature during 10—24 h, either under N₂ containing freshly generated B₂H₆⁵ or in the presence of a large excess of Me₂S·BH₃, the well known complex U(cp)₃BH₄6 is finally obtained in almost quantitative yields, unambiguously identified by ¹H and ¹¹B n.m.r. spectroscopy (Table 2). However, work-up of the corresponding reaction mixtures† obtained either after notably shorter reaction times (reactant: B_2H_6), or by use of an excess of $U(cp)_3R$ relative to Me₂S · BH₃, gave rise to samples the n.m.r. spectra of which indicated the presence of both U(cp)₃BH₄ and U(cp)₃(H₃BR) (Table 1). Occasionally, also, resonances attributable to the starting compound U(cp)₃R and/or to the hitherto unreported species U(cp)₃(H₂BR₂) were detected (Table 2). The intermediate U(cp)₃(H₃BEt) was clearly identified on the basis of its reported ¹H n.m.r. data.⁷ Observations resulting from a

$$(cp)_3U-R + :C \equiv X \longrightarrow (cp)_3U \downarrow_C X$$

$$X = O \text{ or } NR'$$
(1)

systematic variation of the relevant reaction conditions lead to the generalization in Scheme 1.

Although an alternative reaction of in situ-generated H_2BR with $U(cp)_3R$ (formed in step v) cannot be fully excluded, approximately two equivalents of $Me_2S \cdot BH_3$ turn out to be necessary for the complete conversion of one $U(cp)_3R$ molecule into $U(cp)_3BH_4$. Steps ii—iv comprise the 'insertion' procedure.⁸ Steps ii and iii bear some resemblance to the initial steps frequently suggested for alkene and alkyne hydroboration.⁹ Step v may be considered as a slightly modified reversal of the successful preparation of $U(cp)_3(H_3BEt)$ from $U(cp)_3BH_4$ and BEt_3 .⁷

Table 1. Composition of various mixtures after incomplete product formation (deduced from the integrals of the cp ¹H n.m.r. signals). R = Me unless otherwise stated; solvent: toluene.

Ratio of $U(cp)_3R$ to $L \cdot BH_3^a$	Reaction time/h	U(cp) ₃ R (%)	U(cp) ₃ H ₃ BR (%)	U(cp) ₃ BH ₄ (%)
1:1	1	8.5	33	58.5
1:1	2	4	40	56
1:1	24	4	37	59
3:4	20		20	80
2:3	22		15	85
1:2	68		_	100
2:3 ^b	24		9	91
Excess ^{b,c}	2		25	75
Excess ^{b,c}	14			100

^a L = SMe₂ unless otherwise stated. ^b R = Et. ^c L = BH₃.

[†] Reactions were terminated by rapid solvent evaporation; the components of the solid mixture were subsequently identified by i.r. and ^{1}H and ^{11}B n.m.r. spectroscopy (C_6D_6) .

Table 2. Characteristic n.m.r. data (1H and 11B) of various paramagnetic intermediates (positive sign corresponds to high-field shift).

Intermediate species					
	ср	BH_n	R		¹¹ B b
$U(cp)_3(H_3BMe)$	14.03 (s)	72.6 (br.q)	24.62 (s)		$-96.7 (q)^{e}$
$U(cp)_3(H_3BEt)^c$	13.85 (s) [13.81 (s)]	73.6 (br.q) [73.6 (q)]	24.5 (s) [24.6 (q)]	17.8 (t) [17.97 (t)]	$-86.76(q)^{e}$
$U(cp)_3(H_2BMe_2)^d$ $U(cp)_3(H_2BEt_2)^d$	14.82 (s) 14.23 (s)	. (1/3	. (1)1	(73	-37.05 (br.s)

 a C_6D_5H internal standard. b $BF_3 \cdot Et_2O$ external standard. c This work; values from ref. 7 in square brackets. d Other signals not assignable with certainty. c 1; 2:2:1 quartet.

(ii)
$$L \cdot BH_3 \longrightarrow L + BH_3$$
 ($L = BH_3$, Me_2S , or thf)

(iii) $U(cp)_3R + BH_2R' \longrightarrow \left[(cp)_3U - R \text{ or } (cp)_3U \right] + BH_2R'$

(iii)

(iv) $U(cp)_3(\eta)^3 - H_3BR$

or
 $U(cp)_3(\eta)^2 - H_2BR_2$

(v) H_3
 $U(cp)_3BH_4 + \frac{1}{2}(H_2BR)_2$ (or HBR_2)

Scheme 1. Possible reaction steps leading from $U(cp)_3R$ and $L \cdot BH_3$ finally to $U(cp)_3BH_4$. R' = H or R; in square brackets: short-lived intermediates; underlined: observable intermediates.

BH₃-carriers, L, of Lewis basicity superior to those of Me₂S, BH₃, and tetrahydrofuran (thf)‡ (e.g. NEt₃, PPh₃, and pyridine) do not allow BH₃ attack of U(cp)₃R. Conversely, U(cp)₃R reacts with AlR'₃¹⁰ and BPh₃,¹¹ but not with the comparatively less acidic compound B(OMe)₃. Somewhat unexpectedly, U(cp)₃Cl turns out to be unreactive towards both B₂H₆ and BPh₃.¹⁰

The recently described dihapto-acyl complexes $U(cp)_3(\eta^2-OCR)^1$ (R = Me and Et) react with thf · BH₃ at room temperature in essentially the same way as their parent $U(cp)_3R$ systems. Corresponding behaviour was reported by Caulton and Marsella for the complex $Zr(cp)_2Me(\eta^2-COMe)$ even at 0 °C.8a As both the uranium and zirconium complexes are known to extrude CO reversibly above room temperature,

the observed reaction with BH₃ might simply take place via U(cp)₃R and Zr(cp)₂Me₂, respectively.§

Financial support by the C.N.R. (Rome) and Progetto Finalizzato Chimica Fine e Secondaria, and valuable assistance by Messrs. F. Braga and A. Zaghini is gratefully appreciated. R. D. F. is grateful to the C.N.R. for an award under the N.A.T.O. Visiting Professor Scheme.

Received, 3rd June 1985; Com. 761

References

- 1 G. Paolucci, G. Rossetto, P. Zanella, K. Yünlü, and R. D. Fischer, J. Organomet. Chem., 1984, 272, 363.
- 2 A. Dormond, A. A. Elbouadili, and C. Moise, J. Chem. Soc., Chem. Commun., 1984, 749.
- 3 P. Zanella, G. Paolucci, G. Rossetto, F. Benetollo, A. Polo, R. D. Fischer, and G. Bombieri, J. Chem. Soc., Chem. Commun., 1985, 96
- 4 An insertion-like reaction of (cp)₃UR with SO₂ has also been reported: L. Arnaudet, G. Folcher, and H. Marquet-Ellis, *J. Organomet. Chem.*, 1981, 214, 215. Rapid insertion of ketones has also been observed: U-R + O=CR₂′ → M-OCRR₂′, T. J. Marks, NATO ASI on 'Fundamental and Technological Aspects of Organo-f-Element Chemistry,' Acquafredda di Maratea, Italy, Sept. 10—21, 1984 (Plenary lecture).
- 5 Prepared from solvent-free Bu₃SnCl and NaBH₄ at ca. 160 °C; see E. R. Birnbaum and P. H. Javora, J. Organomet. Chem., 1967, 9, 379.
- 6 E.g. R. v. Ammon, B. Kanellakopulos, and R. D. Fischer, Chem. Phys. Lett., 1970, 4, 553; T. J. Marks, W. J. Kennelly, J. R. Kolb, and L. A. Shimp, Inorg. Chem., 1972, 11, 2540.
- 7 T. J. Marks and J. R. Kolb, J. Am. Chem. Soc., 1975, 97, 27.
- 8 (a) The facile transformation of Zr(cp)₂Me₂ into Zr(cp)₂(BH₄)₂ by BH₂ · thf has also been termed an 'insertion' type reaction; see J. A. Marsella and K. G. Caulton, J. Am. Chem. Soc., 1982, 104, 2361. (b) Interestingly, compounds BeMe₂ and AlMe₃ have been reported to react with B₂H₆ to give Be(BH₄)₂ and Al(BH₄)₃, respectively, via various observable intermediates also involving the H₃BMe ligand: L. H. Long, Adv. Inorg. Chem. Radiochem., 1973, 16, 20.
- 9 See, e.g., G. E. Coates, M. L. H. Green, and K. Wade, 'Organometallic Compounds,' Vol. 1, Methuen, London, 1967, p. 182. Initial attack on the metal by one hydrogen atom cannot fully be ruled out in view of the existence of a few complexes involving η¹-co-ordinated BH₄. See, e.g. C. Kutal, P. Grutsch, J. L. Atwood, and R. D. Roger, *Inorg. Chem.*, 1978, 17, 3558; C. A. Ghilardi, S. Midolini, and A. Orlandini, *ibid.*, 1982, 21, 4096.
- 10 V. K. Vasil'ev, V. N. Sokolov, and G. P. Kondratenkov, J. Organomet. Chem., 1977, 142, C7.
- 11 H. Aslan and R. D. Fischer, unpublished results.

 $[\]ddagger$ The thf solution of thf \cdot BH $_3$ (Janssen Chimica) turned out to have suffered from 'ageing.' Thus, during the reaction with $U(cp)_3Me$, the 1H n.m.r. spectrum of $U(cp)_3OBu^n$ was observed, whereas independent reaction of $U(cp)_3Me$ with B_2H_6 in toluene–thf did not give rise to this intermediate.

^{\$} More detailed studies of the reaction of excess of $U(cp)_3(\eta^2\text{-COR})$ with $Me_2S \cdot BH_3$ or B_2H_6 at low temperatures are underway.