A Stereoselective Total Synthesis of (\pm) -Pentalenene

Goverdhan Mehta* and Kasibhatla Srinivas Rao

School of Chemistry, University of Hyderabad, Hyderabad 500134, India

A short, stereoselective synthesis of triquinane sesquiterpene hydrocarbon (\pm) -pentalenene (4) from commercially available 1,5-dimethylcyclo-octa-1,5-diene (5) involving a transannular cyclisation as the pivotal step is described.

Angularly fused triquinane natural products e.g., isocomene (1),^{1a} silphenene (2),^{1b} senoxydene (3),^{1c} pentalenene (4)^{1d} among many others,^{1e,f} have received a great deal of attention from synthetic chemists during the past few years due to their unique molecular architecture, embellished with a variety of methyl substituents.² Among these the sesquiterpene hydro-

carbon pentalenene (4), isolated^{1d} from *Streptomyces* griseochromogenes has held special attraction due to its novel biosynthetic origin^{3a} and its role as the key precursor of the pentalenolactone family of antibiotics,^{3b} Scheme 1. From the synthetic point of view, the challenge of pentalenene (4) resides in the efficient formation of the tricyclo[$6.3.0.0^{4,8}$]un-

J. CHEM. SOC., CHEM. COMMUN., 1985

Pentalenolactone

Scheme 1

(4)

decane framework and the generation of four contiguous asymmetric centres around the spiro carbon atom (C-8).⁴ We report here a new synthesis of (4) which employs a transannular C⁺– π type of cyclisation within a bicyclo[6.3.0]undecane system as the key transformation to generate the angular triquinane framework.^{4d,5} Our synthesis is notable for its conceptual simplicity, brevity, and apparent generality (Scheme 2).

Readily available 1,5-dimethylcyclo-octa-1,5-diene (5) on hydroboration-oxidation followed by pyridinium chlorochromate (PCC) oxidation furnished the enone (6) in good yield. Kinetically controlled allylation of the lithium enolate derived from (6) exclusively furnished the *trans*-(7) in keeping with the recent observation of Clark Still on similar systems.⁶ Tsuji oxidation⁷ of (7)[†] proceeded uneventfully to give (8).[†] At this stage, to ensure the correct relative stereochemistry at C-4 and C-9 in pentalenene (4), the dione (8) was subjected to base catalysed equilibration to furnish a 4:1 mixture of (9)[†] and (8),[†] respectively. The *cis*-dione (9) on exposure to sodium hydride underwent smooth aldol cyclisation to afford the

Scheme 2. Reagents and conditions: i, 9-borabicyclo[3.3.1]nonane, THF, 70%; ii, PCC-molecular sieves 4 Å, CH_2Cl_2 , 87%; iii, $(Me_3Si)_2NH-Bu^{\mu}Li$, $CH_2=CHCH_2Br$, -78 °C, THF, 75%; iv, PdCl_2, CuCl, O₂; *N*, *N*-dimethylformamide, 80%; v, KOH-MeOH, 82%; vi, NaH, THF, 70%; vii, BF₃=Et₂O, HCO₂H, 55%; viii, Ph₃P+CH₂OMeCl⁻-t-C₅H₁₁O⁻Na⁺-Et₂O; ix, 35% HClO₄-Et₂O, 80% [from (11)]; x, KH-MeI, THF, 0–10 °C, 63%; xi, N₂H₄, Na, (HOCH₂CH₂)₂O, (HOCH₂)₂, 33%.

bicyclic enone (10)[†] (80%) along with its C-4 epimer (20%). The key step now was the transannular cyclisation and after much exploratory work employing toluene-p-sulphonic acid, Nafion-H, trimethylsilyl trifluoromethanesulphonate, etc., we found that formic acid in the presence of BF₃-diethyl ether effected the desired cyclisation to give the tricyclic ketone (11) in 55% isolated yield. The structure of $(11)^{\dagger}$ was confirmed by the presence of a cyclopentanone moiety (i.r.: 1730 cm⁻¹) and a quaternary carbon centre (δ 62.1, s) in the ¹³C n.m.r. spectrum. At this stage, we sought to convert (11) into pentalenene through direct geminal dimethylation with Reetz titanium reagent.⁸ Reaction of (11) with Me₂TiCl₂, provided a complex mixture of C_{14} and C_{15} -alkenes and although g.c.-mass spectroscopic analysis indicated the presence of (4) $(\sim 10\%)$, it was preparatively unworkable. A more circuitous approach was therefore adopted. Wittig olefination of (11) with methoxymethyltriphenylphosphonium chloride and mild acidic hydrolysis of the product gave the C_{14} -aldehyde (12).† Methylation of (12) with KH-MeI in tetrahydrofuran (THF) established the second quaternary carbon centre at C-6, and the resulting C₁₅-aldehyde (i.r.: 2700, 1720 cm⁻¹; ¹H n.m.r.: δ 9.41, s) on Wolff-Kishner reduction led to (\pm) -pentalenene (4), which was identical (¹H and ¹³C n.m.r.) with the natural product.

We thank the U.G.C. for a special assistance programme in organic chemistry and for COSIST support, Professor G.

[†] Compound (7): i.r. (neat) 1710, 1640 cm⁻¹; ¹H n.m.r. (CDCl₃, 100 MHz): δ 6.12-5.44(1H,m), 5.44-5.16(1H,t), 5.16-4.84(2H,m), 3.04-1.04(10H, series of m), 1.68(3H,br s), 0.96(3H,d); ¹³C n.m.r. (CDCl₃, 25.0 MHz): δ 216.9, 136.5, 135.2, 125.5, 116.6, 56.1, 41.0, 36.0(2C), 33.0, 27.4, 23.4, 19.1; (8): i.r. (neat) 1700 cm⁻¹; ¹H n.m.r. (CDCl₃, 100 MHz): δ 5.36(1H,t), 3.16–2.36(4H,m), 2.36– 1.84(4H,m), 2.15(3H,s), 1.6-1.12(2H,m), 1.69(3H,brs), 1.0(3H,d); ¹³C n.m.r. (CDCl₃, 25.0 MHz): δ 218.9, 205.3, 136.2, 126.0, 51.0, 45.2, 41.7, 35.5, 32.9, 29.9, 27.1, 23.8, 19.1; (9): i.r. (neat) 1700 cm⁻¹; ¹H n.m.r. (CDCl₃, 100 MHz): δ 5.28(1H,t), 3.24–1.0(10H, series of m), 2.0(3H,s), 1.68(3H,br s), 0.88(3H,d); ¹³C n.m.r. (CDCl₃, 25.0 MHz): 8 217.6, 206.8, 135.3, 125.1, 49.1, 45.2, 44.5, 33.8. 31.5, 30.0, 26.1, 25.1, 17.6; (10): i.r. (neat) 1670, 1595 cm⁻¹; ¹H n.m.r. (CDCl₃, 100 MHz): δ 5.92(1H,br s), 5.32(1H,t), 3.12-1.2(10H, series of m), 1.8(3H,br s), 1.1(3H,d); ¹³C n.m.r. (CDCl₃, 25.0 MHz): 8 208.5, 192.3, 135.3, 128.8, 125.1, 44.0, 43.3, 38.1, 35.9, 35.2, 26.0, 25.0, 21.8; (11): i.r. (neat) 1730 cm⁻¹; ¹H n.m.r. (CDCl₃, 100 MHz): δ 5.08(1H,br s), 3.28–1.12 (11H, series of m), 1.64(3H,br s), 0.92(3H,d); $^{13}\mathrm{C}$ n.m.r. (CDCl₃, 25.0 MHz): δ 219.0, 144.0, 126.8, 62.1, 60.2, 51.6, 45.9, 43.6, 43.0, 34.8, 28.7, 15.8, 15.2; (12): i.r. (neat) 2700, 1720 cm⁻¹.

Pattenden, University of Nottingham for providing the ${}^{1}H$ n.m.r. spectrum of pentalenene and Professor M. T. Reetz for his help.

Received, 17th July 1985; Com. 1041

References

- (a) F. Bohlmann, N. Le Van, and J. Pickardt, Chem. Ber., 1977, 110, 3777; (b) F. Bohlmann and J. Jakupovic, Phytochemistry, 1980, 19, 259; (c) F. Bohlmann and C. Zdero, *ibid.*, 1979, 18, 1747; (d) H. Seto and H. Yonehara, J. Antibiot., 1980, 33, 92; (e) A. Groweiss, W. Fenical, He Cun-heng, J. Clardy, Wu Zhongde, Y. Zhongnian, and L. Kanghou, Tetrahedron Lett., 1985, 26, 2379; (f) F. Bohlmann, H. Suding, J. Cuatrecasas, H. Robinson, and R. M. King, Phytochemistry, 1980, 19, 2399.
- 2 For a recent review in the area see, L. A. Paquette, *Top. Curr. Chem.*, 1984, **119**, 84, 108.
- 3 (a) D. E. Cane, C. Abell, and A. M. Tillman, *Bioorg. Chem.*, 1984, **12**, 312; (b) D. E. Cane and A. M. Tillman, *J. Am. Chem. Soc.*, 1983, **105**, 122.
- 4 For synthetic studies directed towards pentalenene, see, (a) Y. Ohfune, H. Shirahama, and T. Matsumoto, *Tetrahedron Lett.*, 1976, 2869; S. Misumi, T. Ohtsuka, Y. Ohfune, K. Sugita, H. Shirahama, and T. Matsumoto, *ibid.*, 1979, 31; (b) G. D. Annis and L. A. Paquette, *J. Am. Chem. Soc.*, 1982, **104**, 4504; L. A. Paquette and G. D. Annis, *ibid.*, 1983, **105**, 7358; (c) E. Piers and V. Karunaratne, *J. Chem. Soc., Chem. Commun.*, 1984, 959; (d) G. Pattenden and S. J. Teague, *Tetrahedron Lett.*, 1984, **25**, 3021.
- 5 G. Mehta and K. Srinivas Rao, Tetrahedron Lett., 1984, 25, 3481.
- 6 W. Clark Still and I. Galynker, Tetrahedron, 1981, 37, 3981.
- 7 J. Tsuji, I. Shimizu, and K. Yamamoto, Tetrahedron Lett., 1976, 2975.
- 8 M. T. Reetz, Top. Curr. Chem., 1982, 106, 1.