A Synthetic Route to Encapsulated Ru Compounds: Properties of the [Ru(3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane)]^{2+/3+} lons

Paul Bernhard and Alan M. Sargeson*

Research School of Chemistry, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601, Australia

The synthesis of Ru(sar)²⁺ (sar = 3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) from Ru(DMF)₆²⁺ (DMF = N,N-dimethylformamide) and sar is described along with its properties and oxidation to Ru(sar)³⁺ and thence to a Ru^{II} monoimine complex.

Among the many complexes which have been obtained from the versatile $\text{Ru}(\text{H}_2\text{O})_6^{2+}$ complex,¹ $\text{Ru}(\text{DMF})_6^{2+}$ (DMF = N,N-dimethylformamide) is of special interest due to its synthetic potential. The orange salt [$\text{Ru}(\text{DMF})_6$](CF₃SO₃)₂ (1) was prepared by treating [$\text{Ru}(\text{H}_2\text{O})_6$](CF₃SO₃)₂ with pure DMF under argon and scavenging the water with triethylorthoformate, followed by concentration of the solution and crystallization at -20 °C (in >85% yield).[†] The yellow salt [Ru(DMF)₆](CF₃SO₃)₃ (2) was obtained by oxidizing (1) with

[†] Satisfactory elemental analyses (C,H,N,S,F) were obtained for all products. $\lambda_{max.}(\epsilon_{max.})$ in DMF: (1), 492 (190), 314 nm (12800). (2), 338 nm (5400). $E^{\circ}[(2)/(1)]$ in 0.1 M Bu₄NClO₄/DMF (22°C): -0.42 V vs. ferrocene.

Figure 1. Upper part: 200 MHz ¹H and 50 MHz ¹³C{¹H} n.m.r. spectra of Ru(sar)²⁺ in D_2O vs. DSS (sodium 2-dimethyl-2-silapentane sulphonate) and 1,4-dioxane, respectively. Lower part: 200 MHz ¹H n.m.r. spectrum of Ru(sar)³⁺ in CF₃SO₃D vs. DSS.

AgCF₃SO₃ in DMF and was crystallized as described above (in >85% yield).[†] Overall rate constants[‡] for reaction (1) for the complexes in 0.1 M CF₃SO₃H (25 °C) are $k = 2.5 \times 10^{-3}$ s⁻¹ (1) and $k = 2 \times 10^{-7}$ s⁻¹ (2) which are only an order of magnitude smaller than the water exchange rate constants for the hexa-aqua ions respectively.²

$$\operatorname{Ru}(\mathrm{DMF})_{6}^{n+} + 6\operatorname{H}_{2}\operatorname{O} \xrightarrow{\kappa} \operatorname{Ru}(\operatorname{H}_{2}\operatorname{O})_{6}^{n+} + 6\operatorname{DMF} (1)$$

The potential for use of $Ru(DMF)_6^{2+}$ in reactions with strongly basic ligands§ is demonstrated by the reaction of

Figure 2. Optical spectra of (a) $Ru(sar)^{2+}$ and (b) Ru^{II} monoimine complex in 0.1 M CF₃SO₃H.

 $Ru(DMF)_6^{2+}$ with sar (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane):³ stoicheiometric amounts of (1) and sar in dry ethanol (*ca*. 0.1 M solution) were refluxed for 2 days in a strictly O₂-free atmosphere. Upon cooling to 0 °C the compound [Ru(sar)](CF₃SO₃)₂ (3) precipitated. It was recrystallized from 1 M CF₃SO₃H (in *ca*. 60% yield).[†] The pale-yellow compound is extremely sensitive towards oxidants. This synthetic route circumvents the difficulties encountered on attempting to cap the Ru(en)₃³⁺ (en = 1,2-diaminoethane) ion.

$$[Ru(DMF)_{6}](CF_{3}SO_{3})_{n}$$
(1); n = 2
(2); n = 3
[Ru(sar)](CF_{3}SO_{3})_{2}
(3)

The ¹H n.m.r. spectrum of the Ru(sar)²⁺ complex exhibits essentially two AB patterns [-CH₂- groups (en and cap)] one of which ($\delta 2.6$ and 3.3) is weakly coupled ($J \sim 2$ Hz) to the cap \geq C-H group ($\delta 1.7$) and is therefore assigned to the -CH₂groups of the cage cap. The ¹³C{¹H} n.m.r. spectrum exhibits two intense signals and a weaker one which are assigned correspondingly. The spectra (Figure 1, upper part) clearly point to the D_3 symmetry of the ion. The ¹H n.m.r. spectrum of the paramagnetic Ru(sar)³⁺ complex which was obtained by oxidizing (3) in neat CF₃SO₃D with AgCF₃SO₃ exhibits five broad signals with relative intensities of 3:3:1:3:3 (Figure 1, lower part). With the exception of the cap \geq C-H group (δ -0.9) no assignments to the four different protons of the -CH₂- groups can be made from this spectrum at this stage.

The electronic spectrum of $\text{Ru}(\text{sar})^{2+}$ in 0.1 M CF₃SO₃H is shown in Figure 2(a). A weak shoulder at 387 nm ($\varepsilon \sim 35 \text{ dm}^3$

[‡] Strictly speaking, the reaction involves a number of different rate constants; but the decrease of the absorptions at 492 nm (1) and 338 nm (2) in the electronic spectra showed a single first order decay.

[§] Reaction of $Ru(H_2O)_6^{2+}$ with strongly basic ligands leads to decomposition (presumably disproportionation of the divalent oxidation state under formation of Ru metal and polymeric oxo- and hydroxo-species).

mol⁻¹ cm⁻¹) is assigned to the spin allowed transition ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ whereas the high intensity of the band at 282 nm ($\epsilon \sim 2000$ dm³ mol⁻¹ cm⁻¹) implies charge transfer character thus obscuring further d-d transitions; in fact, similar intense bands in Ru(NH₃)₆²⁺ [λ_{max} . (ϵ_{max}): 275 nm (640 dm³ mol⁻¹ cm⁻¹)] and Ru(en)₃²⁺ [302 nm (1020 dm³ mol⁻¹ cm⁻¹)] have been interpreted in terms of a charge transfer to the solvent (c.t.t.s.) on the basis of their solvent dependence and the photochemical properties of these complexes.⁴

The reversible reduction potential for the Ru(sar)^{3+/2+} couple, established by cyclic voltammetry in 1.0 M CF₃SO₃H (scan rate: 0.5 V s⁻¹) was 0.290 \pm 0.005 V vs. normal hydrogen electrode (NHE) (25.0 °C), slightly higher than for Ru(en)₃^{3+/2+} and Ru(NH₃)₆^{3+/2+.4,5} Even in strongly acidic aqueous solutions Ru(sar)³⁺ appeared to be stable only on the voltammetric timescale and oxidized rapidly to give a Ru^{II} monoimine species. This reactivity obviated the direct measurement of the electron self exchange rate.¶ However, from the rates of oxidation of Ru(sar)²⁺ by the complexes (NH₃)₅RuL³⁺ (L = pyridine, nicotinamide, isonicotinamide)⁶ a value of *ca*. 10⁵ dm³ mol⁻¹ s⁻¹ (25.0 °C, 1.0 M CF₃SO₃H) for the Ru(sar)^{3+/2+} self exchange was obtained using the Marcus–Hush cross relationship. The rate is thus faster than those for Ru(NH₃)₆^{3+/2+} and Ru(en)₃^{3+/2+} 7 which is consis-

¶ For the same reason a reproducible electronic spectrum of $Ru(sar)^{3+}$ has not been obtained so far.

tent in general with the observed increases of the self exchange rates for the encapsulated cobalt complexes.

The Ru^{II} monoimine complex exhibits a visible band at 392 nm [Figure 2(b)] which is assigned to a t_{2g} (M) $\rightarrow \pi^*$ (L) charge transfer. The ¹H and ¹³C n.m.r. data indicate that the imine group is in the cap rather than in the ethanediamine portion of the ligand. In 1 M CF₃SO₃H, further oxidation of the ligand was achieved electrochemically but these species have not yet been characterised.

We are grateful to the A.N.U. Microanalytical Services Unit for analyses.

Received, 16th July 1985; Com. 1036

References

- 1 P. Bernhard, H. B. Bürgi, J. Hauser, H. Lehmann, and A. Ludi, *Inorg. Chem.*, 1982, **21**, 3936.
- 2 I. Rapaport, L. Helm, P. Bernhard, A. Ludi, and A. Merbach, J. Chem. Soc., Chem. Commun., 1984, 302.
- 3 A. M. Sargeson, Pure Appl. Chem., 1984, 56, 1603.
- 4 T. Matsubara, S. Efrima, H. I. Metiu, and P. C. Ford, J. Chem. Soc., Faraday Trans. 2, 1979, 75, 390.
- 5 H. S. Lim, D. J. Barcley, and F. C. Anson, *Inorg. Chem.*, 1972, 11, 1460.
- 6 G. M. Brown, H. J. Krentzien, M. Abe, and H. Taube, *Inorg. Chem.*, 1979, 18, 3374.
- 7 N. Sutin, Prog. Inorg. Chem., 1982, 30, 441 and references therein.