Xenon Derivatives of the Highly Electronegative O=IF₄O Group†

Robert G. Syvret and Gary J. Schrobilgen*

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4MI, Canada

Stable oxygen-bonded xenon(II) and xenon(IV) derivatives of the highly electronegative $O=IF_4O$ group have been shown to exist in solution by ¹⁹F and ¹²⁹Xe n.m.r. spectroscopy; the solid derivative, *cis,cis*-Xe(OIF₄O)₂, has also been isolated and characterized, and ¹²⁹Xe n.m.r. chemical shifts have been used to established the $O=IF_4O$ group as the most electronegative group known next to fluorine.

In addition to the simple binary fluorides, oxides, and fluoride oxides of xenon,¹ a number of ligands are known which are bonded to xenon through either oxygen² or nitrogen.³ Each of these groups exists in the form of its monoprotic acid and possesses an effective group electronegativity which is very high. In the case of the OTeF₅ group, the effective electronegativity approaches that of fluorine itself, *i.e.* 3.87 on the Pauling scale.⁴

In the present work we have investigated the formation of xenon derivatives of the highly electronegative $O=IF_4O$ group. The latter group has been little studied with respect to derivative formation although FOIOF₄, ClOFOF₄, and $IO_2F_4^-$ salts are presently known.⁵ It is generally convenient to synthesize xenon(II) derivatives by direct interaction of the xenon fluoride with the corresponding acid. In the case of HOIOF₄ we have discovered that this route was unsafe, leading to the formation of FOIOF₄ and its subsequent

detonation. Attempts to prepare the O=IF₄O analogue of $B(OTeF_5)_3$, the most widely used ligand-transfer reagent for the OTeF₅ group,² by the interaction of BCl₃ and HOIOF₄ also lead to the formation of explosive side products (believed to be chlorine oxides). Rather, insertion reactions of the type given in equations (1) and (2) utilizing the IO₂F₃ dimer⁶ and an acid displacement reaction [equation (3)] were employed.

$$XeF_{2} + (IO_{2}F_{3})_{2} \xrightarrow{CFCl_{3} \text{ or}} FXeOIF_{4}O + IOF_{3} + \frac{1}{2}O_{2} \quad (1)$$

$$FXeOIF_{4}O + (IO_{2}F_{3})_{2} \xrightarrow{CFCl_{3} \text{ or}} SO_{2}CIF Xe(OIF_{4}O)_{2} + IOF_{3} + \frac{1}{2}O_{2} \quad (2)$$

$$Xe(OTeF_{5})_{2} + 2HOIOF_{4} \xrightarrow{CFCl_{3}}$$

$$Xe(OIF_4O)_2 + 2HOTeF_5$$
 (3)

The compounds were characterized in $CFCl_3$ or SO_2ClF solution by ¹²⁹Xe n.m.r. spectroscopy (Figures 1a,b and 2) and

[†] Added in proof: The work described in this communication was reported in part at the 8th European Symposium on Fluorine Chemistry, Jerusalem, Israel, August 21–26, 1983. Complementary work was also presented at the same conference by J. H. Holloway and D. Laycock. Abstracts: J. H. Holloway and D. Laycock, J. Fluorine Chem., 1983, 23, 443; G. A. Schumacher, T. R. G. Syvret and G. J. Schrobilgen, *ibid.*, 1983, 23, 444.

Figure 1. ¹²⁹Xe N.m.r. spectrum (69.38 MHz) of a 1:3.53 XeF₂-IO₂F₃ mixture recorded in SO₂CIF at -5° C showing (a) the doublet of quintets [δ (¹²⁹Xe) = -1741.8 p.m.] arising from *trans*-FXeOIOF₄ (1); (b) the nonet [δ (¹²⁹Xe) = -1859.0 p.p.m.] arising from *trans*, *trans*-Xe(OIOF₄)₂ (3).

Table 1. N.m.r. parameters for (δ values in p.p.m. and J in Hz) for the XeF₂-IO₂F₃ and XeF₄-IO₂F₃ systems

Species ^a	Solvent	Temp.°C	δ(¹²⁹ Xe) ^{b,c}	δ (¹⁹ F) ^{c,d}	¹ J (¹²⁹ Xe ⁻¹⁹ F)	³ J (¹²⁹ Xe- ¹⁹ F)
(1)	SO ₂ ClF	-5	-1741.8	-168.0	5909	41.8
	CFCl ₃	24	-1856.7	_	5876	43.0
(2)	SO ₂ CIF	-5	-1868.5	-158.2	5866	
	CFCl ₃	24	-1966.1	_	5848	e
(3)	SO ₂ CIF	-5	-1859.0			
	CFCl ₃	24	-1990.6			38.3
(4)	SO ₂ CIF	-5	-1985.3			
	CFCl ₃	24	-2116.3			e
(5)	SO ₂ CIF	-5	-2102.0			
	CFCl ₃	24	-2231.0			e
(6)°	CFCl ₃	24	24.4	8.98(t) -8.65(d)	3417(d) 3658(t)	49f

^a Xenon fluoride: IO_2F_3 ratio = 1:2. ^b Recorded at 69.38 MHz and referenced with respect to external neat XeOF₄ at 24 °C. ^c Positive chemical shifts signify a high frequency shift with respect to the reference. ^d Recorded at 235.31 MHz and referenced with respect to external neat CFCl₃ at 24 °C. ¹⁹F Chemical shifts reported are for fluorine on xenon. ^e Multiplet fine structure was only partially resolved. ^f Value obtained from the ¹²⁹Xe satellite spacings in the ¹⁹F n.m.r. spectrum.

Table 2. Some key Raman frequencies for $cis, cis-Xe(OIOF_4)_2$ (5).

Wavenumber/cm ⁻¹ a	Tentative assignment		
889(32)	ν(I=O)		
745(8)	$v_{asym}(IF_2)_{eq.}$		
688(56)	$v_{sym}(IF_2)_{eq}$		
668(38)	$v_{asym}(IF_2)_{ax}$		
614(54)	$v_{sym}(IF_2)_{ax}$		
464(100)	$v_{sym}(Xe-O-I), v_{sym}(XeO_2)^{b}$		
443(3)	v_{asym} (Xe–O–I), v_{asym} (XeO ₂) ^b		
148(78)	δ(O-Xe-O)		

^a Raman spectrum recorded at -196 °C in an FEP sample tube. ^b These modes are presumed to be strongly coupled.

their characterization was corroborated, along with other fluorinated products, by ¹⁹F n.m.r. spectroscopy. For the sake of brevity the ¹⁹F n.m.r. results are not included in the present communication. Table 1 provides a summary of relevant ¹⁹F and ¹²⁹Xe parameters associated with the xenon derivatives of the O=IF₄O group [structures (1)—(6)]. On the basis of a comparison of the ¹²⁹Xe chemical shifts of FXeOTeF₅ $[\delta$ (¹²⁹Xe) -2051 p.p.m in SO₂ClF solvent at 24 °C] and $Xe(OTeF_5)_2$ (-2447 p.p.m. in $CFCl_3$ solvent at 24 °C) with those of the corresponding O=IF₄O derivatives it is apparent that the latter group is more electronegative than $OTeF_5$, making it the most highly electronegative ligand known next to fluorine itself. This is also confirmed by the preparation of F_3 XeOIOF₄ in solution and comparison of its ¹²⁹Xe chemical shift with that of the corresponding OTeF₅ derivative $\left[\delta\right]$ (129Xe) -25.5 p.p.m for F₃XeOTeF₅ in CFCl₃ solvent at 24 °C]. The ¹²⁹Xe chemical shifts of the xenon(11) derivatives are also noted to be additive, progressing to lower frequency with increased substitution of the cis-O=IF₄O group. Additivity in chemical shifts is well established and, in the present instance, serves to confirm our structural assignments.

In addition $Xe(OIOF_4)_2$ has been prepared and isolated according to equation (3) as a pale yellow solid at 0 °C. The Raman, and ¹⁹F and ¹²⁹Xe n.m.r. spectra are consistent with proposed *cis*, *cis*-structure (5); thus, only a single I=O stretch is observed and only the *cis*, *cis*-isomer is confirmed to be present in solutions when the solid sample is redissolved in CFCl₃.

Figure 2. ¹²⁹Xe N.m.r. spectrum (69.38 MHz) of a 1 : 1.98 XeF_4 -IO₂F₃ mixture recorded in CFCl₃ at 24 °C showing the doublet of triplets [δ (¹²⁹Xe) 24.4 p.p.m.] arising from F₃XOIOF₄ (6). The asterisk (*) denotes an XeF₄ multiplet peak.

Some key Raman frequencies are given in Table 2. The compound is unstable at room temperature, rapidly undergoing decomposition according to equation (4).

$$cis, cis-Xe(OIOF_4)_2 \longrightarrow IF_5 + IOF_3 + Xe + \frac{3}{2}O_2$$

$$\downarrow$$

$$\frac{1}{2} IF_5 + \frac{1}{2} IO_2F$$
(4)

We thank the Natural Sciences and Engineering Research Council of Canada for support of this work and the Ontario Ministry of Education for the award of a scholarship (R. G. S.).

Received, 22nd August 1984; Com. 1213

References

- 1 N. Barlett and F. O. Sladky, in 'Comprehensive Inorganic Chemistry,' A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, vol. 1, p. 213.
- 2 K. Seppelt, Acc. Chem. Res., 1979, 12, 211.
- 3 J. F. Sawyer, G. J. Schrobilgen, and S. J. Sutherland, *Inorg. Chem.*, 1982, 21, 4064.
- 4 T. Birchall, R. D. Myers, H. De Waard, and G. J. Schrobilgen, Inorg. Chem., 1982, 21, 1068.
- 5 K. O. Christe, R. D. Wilson, and C. J. Schack, *Inorg. Chem.*, 1981, **20**, 2104.
- 6 L. E. Smart, J. Chem. Soc., Chem. Commun., 1977, 519.