Ring-transformation Reactions of 4-Imino-1,3-4H-oxazoles

Gerrit L'abbé* and Rik Destexhe

Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3030 Heverlee, Belgium

The 4-imino-1,3-4*H*-oxazole (3) undergoes ring-opening cycloaddition reactions with electrophilic heterocumulenes by way of an extended Boulton–Katritzky scheme.

A general rearrangement in heterocyclic chemistry involving the participation of three side-chain atoms is the azole–azole interconversion (1) \rightarrow (2), generalized by Boulton and Katritzky. This scheme is limited to heterocycles containing the N–O bond; the nucleophilic C-3 substituent (XYZ) in principle is a heteroallyl moiety, although the reaction has been extended to saturated chains. 2

We have now found that the 4-imino-1,3-4H-oxazole (3) undergoes cycloaddition reactions with electrophilic heterocumulenes (X=C=Y) to give (5) and/or (6) via the intermediacy of the dipolar species (4).† The rearrangement (4) \rightarrow (5) and/or (6) bears some analogy with the Boulton-Katritzky scheme (1) \rightarrow (2), but differs basically in that the electrophilic centre is carbon instead of nitrogen. The reactions occur under mild conditions (refluxing benzene) because of the presence of a good leaving group in the starting molecule. This extension of the Boulton-Katritzky scheme has not so far been recognized, although a single example exists in the literature.³

Compound (3) was prepared by cycloaddition of ethyl azidoformate with dimethylketen-N-(tolyl)imine according to the literature procedure.⁴ Treatment of (3) with two equivalents of tosyl isocyanate in benzene at 90 °C for 7 days led to

† All compounds gave satisfactory C, H analyses and spectral data (i.r., ¹H and ¹³C n.m.r., and mass spectra) in agreement with the assigned structures.

the isolation of two products which were characterized as (5a) (11%, m.p. 189 °C) and (6a) (47%, m.p. 168 °C). When the reaction was followed in CDCl₃ solution at 70 °C by integration of the ring methyl signals in the ${}^{1}H$ n.m.r. spectrum [at δ 1.53 for (3), 1.73 for (5a), and 1.97 for (6a)], (5a) was observed as the major product at the early stage of the reaction, whereas (6a) predominated at the end of the reaction. Thus, (5a) reached a maximum concentration of 65% after 20 h, but then decreased in favour of (6a). After 600 h, the concentrations of (5a) and (6a) were 47% and 53% respectively. The isomerization of an isourea structure (5a) into a more stable urea structure (6a) is a typical Dimroth rearrangement, 5 known to occur under these reaction conditions.

Distinction between (5a) and (6a) is easily made on the basis of the positions of the C-5 carbon resonances in the ¹³C n.m.r. spectra. These are situated at δ 88.1 for (5a) and 66.7 for (6a) as expected for oxygen and nitrogen respectively in the α -position.³

When (3) was heated with chlorosulphonyl isocyanate in benzene solution at 70 °C, the n.m.r. spectrum indicated the presence of (5b) along with 20% of the hydrolysed product (7b). Attempted purification by column chromatography on silica gel furnished the hydrolysed product (7b) (33%, m.p. 191 °C) exclusively. Compound (5b) (m.p. 144 °C), however, could be isolated in the pure state (25%) by fractional crystallization of the crude reaction mixture from chloroformdiethyl ether.

Similarly, the reaction of (3) with benzoyl isocyanate at 80 °C in acetonitrile yielded (5c) (34%, m.p. 150 °C), but treatment of the crude reaction mixture on a silica gel column furnished (5d) (36%, m.p. 115 °C). Both (5b) and (5c) are the kinetic products of the reaction.

The strongly electrophilic phenylsulphonyl isothiocyanate and tosyl isothiocyanate reacted with (3) at 75 °C to give (6e) (76%, m.p. 227 °C) and (6f) (71%, m.p. 235 °C) respectively as the sole reaction products. Cyclization thus occurred at nitrogen as shown by the C-2=S and C-5 carbon resonances at δ 179 and 70 respectively in the ¹³C n.m.r. spectrum.³ Compound (6f) remained unchanged when treated with 1,4-diazabicyclo[2.2.2]octane, but hydrolysed to (8f) (100%, m.p. 231 °C) in dilute hydrochloric acid.

Whereas (3) reacted with bis(ethoxycarbonyl)ketene⁶ at 80 °C to give (7g) (17%, m.p. 158 °C) after column chromatography on silica gel, diphenylketene reacted in a different manner and furnished the spiro-cycloadduct (9) (30%, m.p. 179 °C). Its structure was established by spectral methods, in particular by the occurrence of two different ring methyl absorptions in the ${}^{1}H$ (δ 0.95 and 1.45) and ${}^{13}C$ n.m.r. spectra (δ 23.4 and 26.6). This is because of the presence of an asymmetric carbon atom in the α -position.

No cycloadducts were obtained when (3) was treated with phenyl isocyanate, phenyl isothiocyanate, benzoyl isothiocyanate, methyl acrylate, methyl vinyl ketone, or acrylonitrile.

We thank the I.W.O.N.L. (Belgium) for a fellowship (to R. D.) and the University of Leuven and the Ministerie voor Wetenschapsbeleid for financial support.

Received, 5th August 1985; Com. 1164

References

- 1 A. J. Boulton, A. R. Katritzky, and A. M. Hamid, J. Chem. Soc. C, 1967, 2005
- 2 D. Korbonits, E. M. Bakó, and K. Horváth, J. Chem. Res. (S), 1979, 64; C-K. Kim, P. A. Zielinski, and C. A. Maggiulli, J. Org. Chem., 1984, 49, 5247.
- 3 G. L'abbé, C-C. Yu, and S. Toppet, J. Org. Chem., 1979, 44, 3991.
- 4 W. J. Kauffman, J. Org. Chem., 1970, 35, 4244. 5 For a review see: G. L'abbé, J. Heterocycl. Chem., 1984, 22, 627.
- 6 R. Gompper and U. Wolf, Liebigs Ann. Chem., 1979, 1388.