Poly(1-chloro-oct-1-yne): a New, High-molecular-weight Polyacetylene synthesized with Molybdenum Catalysts

Toshio Masuda,* Kazutaka Tamura, and Toshinobu Higashimura*

Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan

1-Chloro-oct-1-yne polymerizes in the presence of Mo catalysts [e.g., $MoCl_5$, $MoCl_5$ -Bun₄Sn, $Mo(CO)_6$ -CCl₄-hv] to give a new, high-molecular-weight (\overline{M}_w up to 1 \times 10⁶), white, soluble, air-stable, electrically insulating polypolyacetylene, which is the first example of a polymer from a chlorine-containing aliphatic disubstituted acetylene.

Acetylene can be polymerized by Ziegler catalysts such as Ti(OBuⁿ)₄-Et₃Al.¹ In contrast, acetylenes with bulky substituent(s) provide polymers in the presence of group 6 (Mo, W)² and 5 (Nb, Ta)³ transition metal catalysts. There have, however, been rather few examples of the formation of polymers from heteroatom-containing disubstituted acetylenes: *e.g.*, l-chloro-2-phenylacetylene, ⁴ l-(trimethylsilyl)-prop-l-yne.⁵ l-Chloroalk-l-ynes have often been used to compare structure and reactivity with those of the corresponding alk-l-ynes and l-chloroalk-l-enes.^{6,7} Here we report the synthesis of a new, high-molecular-weight polymer (1) from

the monomer l-chloro-oct-l-yne (2), and describe its polymer properties.

$$\begin{array}{c} \text{CIC} = \text{C} - \text{n} - \text{C}_6 \text{H}_{13} \rightarrow \{\text{C} = \text{C}\}_n \\ \text{(2)} & | & | \\ \text{Cl n} - \text{C}_6 \text{H}_{13} \\ \text{(1)} \end{array}$$

l-Chloro-oct-l-yne was prepared from oct-l-yne according to the literature method. 8 Catalysts and cocatalysts were employed as purchased. The polymerization was carried out

Table 1. Polymerization of l-chloro-oct-l-yne.a

	Monomer		Polymer (1)b	
Catalyst	conversion/%	Yield/%	$M_{\rm w}/10^3$	[η] ^c /dL g ⁻¹
MoCl ₅	100	78	220	0.95
MoCl ₅ -Bu ⁿ Li	100	86	820	3.78
MoCl ₅ -Et ₃ Al	100	55	780	2.89
MoCl ₅ -Bun ₄ Sn	100	92	870	2.80
MoCl ₅ -Ph ₃ Bi	100	93	520	2.16
$Mo(CO)_6$ - CCl_4 - hv^d	90	85	1200	6.96

^a Polymerized in toluene at 30 °C for 24 h; [monomer] $_0$ = 0.50 m, [MoCl $_5$] = [cocat] = 0.020 m. ^b Methanol-insoluble parts. ^c Intrinsic viscosities measured in toluene at 30 °C. ^d Polymerized in CCl $_4$; [Mo(CO) $_6$] = 0.010 m.

under dry nitrogen. Weight-average molecular weights, $\bar{M}_{\rm w}$, of the polymers were determined by gel permeation chromatography on the basis of a polystyrene calibration.

Only Mo catalysts yielded methanol-insoluble polymers from l-chloro-oct-l-yne among Ziegler catalysts [Ti(OBuⁿ)₄–Et₃Al and Fe(acac)₃–Et₃Al (Hacac = MeCOCH₂COMe)] and various group 5 and 6 transition metal catalysts^{2,3} exploited by us. Even MoCl₅ alone formed in ca. 80% yield a polymer having $\bar{M}_{\rm w}$ of ca. 2 × 10⁵ (Table 1). However, 1:1 mixtures of MoCl₅ with suitable organometallic cocatalysts achieved still higher yields and/or $\bar{M}_{\rm w}$ of polymer; for instance, when Buⁿ₄Sn was used as cocatalyst, a polymer with $\bar{M}_{\rm w}$ up to 9 × 10⁵ formed in over 90% yield. The high molecular weights of the polymers are endorsed by their intrinsic viscosities [η] (Table 1).

The effects of solvent and temperature were examined by using $MoCl_5$ — $Bu^n_4Sn(1:1)$ as catalyst under the conditions shown in Table 1. Polymerization proceeded not only in toluene but also in many other hydrocarbon and halogenated hydrocarbon solvents; *e.g.*, polymer yield/% $(\bar{M}_w/10^3)$: 92 (560) in cyclohexane, 93 (580) in hexane, 92 (430) in CCl_4 , 91 (320) in $(CH_2Cl)_2$. The polymer yield was not dependent on polymerization temperature, while \bar{M}_w decreased slightly with increasing temperature; polymer yield/% $(\bar{M}_w/10^3)$: 86 (830) at 0 °C, 92 (870) at 30 °C (Table 1), 88 (410) at 60 °C, and 89 (560) at 80 °C.

A catalyst obtained by u.v. irradiation of a CCl₄ solution of Mo(CO)₆ [Mo(CO)₆–CCl₄–hv]⁴ provided in high yield a polymer whose $\bar{M}_{\rm w}$ exceeded 1 × 10⁶ (Table 1). Polymerization with this catalyst occurred at 30 °C or above, and $\bar{M}_{\rm w}$ decreased with increasing temperature; polymer yield/% ($\bar{M}_{\rm w}/10^3$): 0 (–) at 0 °C, 85 (1200) at 30 °C (Table 1), 86 (1000) at 60 °C, and 94 (670) at 80 °C. The corresponding W(CO)₆–CCl₄–hv also catalyses olefin metathesis, ⁹ and the present polymerization of acetylenes by group 5 and 6 transition metal catalysts is inferred to proceed *via* metal carbenes as in olefin metathesis. ^{2,10}

The polymer formed is the first example of a polymer from a chlorine-containing aliphatic disubstituted acetylene. Satisfactory analytical data were obtained. The spectral data (for the polymer sample obtained with MoCl₅–Buⁿ₄Sn in Table 1) are as follows: i.r. (KBr) 2950s, 2850s, 1660—1600w, 1460m, 1380w, 1100w, 920w, 800w, and 740w cm⁻¹; ¹³C n.m.r. δ(CDCl₃) 14.0(C-8), 22.6(C-7), 27.8(C-3), 29.7(C-4), 31.6(C-5, C-6), 129.0(C-1), and 136.8(C-2). These data support the polymer having alternating double bonds along the main chain, *i.e.* as shown in structure (1).

Poly(1-chloro-oct-1-yne) is a white solid which shows a weak maximum (ε 720 mol dm⁻³ cm⁻¹) at 280 nm and no

absorption above 320 nm in the u.v.-visible spectrum in hexane solution. This indicates that the main chain assumes a twisted conformation owing to the steric effect of substituents. The exponent, a in the equation, $[\eta] = K\bar{M}_{w}{}^{a}$, was around unity (in Table 1), being larger than the values (a = 0.5—0.8) for most vinyl polymers; this implies the polymer is more rigid than vinyl polymers, and therefore supports a twisted, sterically less hindered conformation. According to X-ray diffraction, this polymer was amorphous. It completely dissolved in hydrocarbons (toluene, hexane etc.) and halogenated hydrocarbons (CCl₄, CHCl₃, etc.). Solution casting afforded a tough polymer film.

The softening point of this polymer was 170—200 °C. When the polymer was heat-treated in air at 120 °C for 20 h, its $\bar{M}_{\rm w}$ hardly decreased (8.7 \times 105 to 6.7 \times 105). The weight loss of the polymer began in air at ca. 310 °C in thermogravimetric analysis (heating rate: 10 °C/min). These results show that this polymer is much more stable than polyacetylene. The electrical conductivity was 4×10^{-18} S cm $^{-1}$, in a typical insulator range.

Synthesis and characterization of a series of poly(1-chloroalk-l-ynes), polyacetylenes of a new category, are now under way.

Received, 26th March 1985; Com. 409

References

- 1 J. C. W. Chien, 'Polyacetylene,' Academic Press, New York, 1984.
- 2 T. Masuda and T. Higashimura, Acc. Chem. Res., 1984, 17, 51.
- 3 T. Masuda, T. Takahashi, and T. Higashimura, J. Chem. Soc., Chem. Commun., 1982, 1297.
- 4 T. Masuda, Y. Kuwane, and T. Higashimura, J. Polym. Sci., Polym. Chem. Ed., 1982, 20, 1043; T. Masuda, M. Yamagata, and T. Higashimura, Macromolecules, 1984, 17, 126.
- T. Masuda, E. Isobe, T. Higashimura, and K. Takada, J. Am. Chem. Soc., 1983, 105, 7473.
- 6 S. Y. Delavarenne and H. G. Viehe, 'Chemistry of Acetylenes,' ed. H. G. Viehe, Marcel Dekker, New York, 1969, ch. 10.
- 7 D. J. Nelson, C. D. Blue, and H. C. Brown, J. Am. Chem. Soc., 1982, 104, 4913.
- 8 H. C. Brown, 'Organic Syntheses via Boranes,' Wiley-Interscience, New York, 1975, p. 184.
- P. Krausz, F. Garnier, and J.-E. Dubois, J. Am. Chem. Soc., 1975, 97, 437; A. Agapiou and E. McNelis, J. Chem. Soc., Chem. Commun., 1975, 187.
- 10 T. J. Katz and S. J. Lee, J. Am. Chem. Soc., 1980, 102, 422; T. J. Katz, T.-H. Ho, N.-Y. Shih, Y.-C. Ying, and V. I. W. Stuart, J. Am. Chem. Soc., 1984, 106, 2659.