The Very High Activity of $(Ph_2P)_2C=CH_2$ to Michael Additions when complexed to Platinum(II) or Platinum(IV)

Xavier L. R. Fontaine, Fatma S. M. Hassan, Simon J. Higgins, Grant B. Jacobsen, Bernard L. Shaw,* and Mark Thornton-Pett

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

Complexes of the types [PtMe₂(vdpp)], [PtMe₃I(vdpp)], or [PtX₂(vdpp)] $\{X = CI \text{ or } I, vdpp = (Ph_2P)_2C=CH_2\}$ undergo Michael additions with various amines, hydrazines, or carbon nucleophiles (ethyl acetoacetate or acetone) to the vinylidene double bond; [PtMe₃I(Ph₂P)₂CHCH₂NHCH₂Ph] isomerizes to [PtMe₃I{Ph₂PCH(PPh₂)CHNHCH₂Ph}].

We have reported previously that the complex [(OC)₄W{(Ph₂P)₂C=CH₂}] undergoes Michael type addition with a variety of amines, hydrazines, and carbon nucleophiles to give functionalized phosphine complexes whereas the free ligand, (Ph₂P)₂C=CH₂ (vdpp), is inactive towards these additions.^{1,2} We now report that vdpp, when complexed to Pt^{II} or Pt^{IV} is very highly activated towards Michael type additions and a variety of novel complexes[†] can be prepared.

Treatment of [Me₂Pt(cyclo-octa-1,5-diene)] with vdpp gave [Me₂Pt(vdpp)] (1), which in toluene solution reacted smoothly with $H_2NNH_2 \cdot H_2O$ or H_2NNHMe to give (2), R = H or Me, in high (80—90%) yield. Treatment of (1) with an excess of allylamine at 20 °C gave, after a few minutes, a 60% yield of the adduct (3), $R^1 = H$, $R^2 = CH_2CH=CH_2$. Other adducts of type (3) were prepared similarly using NHMeCH₂CH=CH₂, $H_2NCH_2C=CH$, NHMeCH₂C=CH, H_2NCH_2Ph , $H_2NCH_2C_6H_4OMe-4$, and the chiral amines (R)-and (S)- α -methylbenzylamine. The products of type (3) were

isolated in 55-90% yields and fully characterized. We expected that PtIV would activate vdpp towards nucleophilic attack more than PtII. Treatment of [Me₂Pt(vdpp)] with an excess of MeI at ca. 20 °C gave the oxidative addition product [Me₃IPt(vdpp)] (4). This PtIV complex (4) reacted with an excess of benzylamine at ca. 20 °C in CDCl₃ to give a single, product [Me₃IPt{(Ph₂P)₂CHCH₂isolable. NHCH₂Ph}] which we formulate, because of the subsequent reactions described below, with the stereochemistry (5), R = CH₂Ph, with the CH hydrogen and the iodine on opposite sides of the P₂Pt plane. Treatment of (4) with an excess of benzylamine in CDCl₃ immediately led to complete conversion into (5) but then (5) gradually changed into two other similar products (A and B) each showing an AX ³¹P-{¹H} n.m.r. pattern with satellites due to ¹⁹⁵Pt. Gradually (over a period of 72 h at ca. 20 °C) (A) was converted completely into (B) and (B) was isolated, characterized, and its crystal structure (details to be published elsewhere) determined as (6). We suggest (A) has the structure (7) and the initial adduct has the structure (5). The isomerization $(5) \rightarrow (6)$ is presumably promoted by the sterically hindered Pt^{IV} forming the less sterically demanding 5-membered ring with the 'harder' (N) donor atom.

[†] The complexes described in this Communication have been characterized by elemental analyses (C, H, N, halogen) and by ¹H, ¹H-{³¹P}, and ³¹P-{¹H} n.m.r. and i.r. spectroscopy; selected data were available to the referees.

We thought initially that PtCl₂ would activate vdpp but that a nucleophile might, preferentially, displace the Cl rather than attack the vinylidene double bond. However, we have found this not to be the case. Thus, such is the remarkably activating effect of PtCl₂ that a 0.02 M solution of [Cl₂Pt(vdpp)] (8) in CD₂Cl₂ at -80 °C reacts immediately and quantitatively with the equivalent amount of H₂NCH₂C₆H₄OMe-4 to give the adduct (9), $R = CH_2C_6H_4OMe-4[^{31}P-\{^{1}H\} \text{ n.m.r. evidence}].$ The adduct (9) has been fully characterized. H₂NNMe₂ immediately adds to (8) at -40 °C to give (9), R = NMe₂. Other amines have been added to (8) and their adducts of type (9) fully characterized, viz. H₂NCH₂CH=CH₂, the chiral amine (R)- α -methylbenzylamine, and H₂NCH₂CO₂Et. Also, and remarkably, ethyl acetoacetate and (8), both 0.012 m, in CH₂Cl₂, in the presence of anhydrous Na₂CO₃, gave the compound (10) in good (86%) yield. We find that although the dichloride (8) does not react with acetone, the corresponding di-iodide [I₂Pt(vdpp)] reacts with acetone to give the C-alkylated product (11). This reaction is promoted by sodium iodide. Recently Schmidbauer³ and co-workers have shown that methanol is added reversibly to vdpp in the 8-membered ring $[(vdpp)AuCl]_2$ but vdpp complexes of Ag or Cu did not add methanol. We suggest that vdpp, when chelated to a single metal with a 4-membered ring, is more likely to undergo Michael type additions than in larger rings or in open-chain structures because the strain in the 4-membered chelate ring will be relieved somewhat as the central carbon goes from $sp^2 \rightarrow sp^3$ hybridisation on Michael addition.

We thank the S.E.R.C. for support and Johnson Matthey PLC for the generous loan of platinum salts.

Received, 12th August 1985; Com. 1203

References

- G. R. Cooper, D. M. McEwan, and B. L. Shaw, *Inorg. Chim. Acta*, 1983, 76, L165.
- 2 G. R. Cooper, F. Hassan, B. L. Shaw, and M. Thornton-Pett, J. Chem. Soc., Chem. Commun., 1985, 614.
- 3 H. Schmidbauer, R. Herr, G. Müller, and J. Riede, *Organometallics*, 1985, **4**, 1208.