A New Route to 2,3-Dihydro-1,4-benzoxathiine and 2,3-Dihydro-1,4-benzodithiine

James Y. Satoh,* Amos M. Haruta, Christopher T. Yokoyama, Yasuo Yamada, and Masakatsu Hirose Department of Chemistry, St. Paul's (Rikkyo) University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171, Japan

The ethylene monothioacetals and dithioacetals of alkylcyclohexanones react with copper(11) bromide to give 2,3-dihydro-1,4-benzoxathiine and 2,3-dihydro-1,4-benzodithiine derivatives, respectively.

1,4-Benzoxathiines have been synthesized from 2-mercaptophenol¹ or allyl phenyl ether,² and 1,4-benzodithiines from 1,2-mercaptobenzene³ or 1,4,2-benzodithiazine,⁴ but the direct syntheses of these derivatives from acetals (**1a**—**h**) have not been reported. We now report that the cyclohexanone ethylene monothioacetals (**1a**—**e**) and dithioacetals (**1f**—**h**) react with copper(II) bromide to give the 2,3-dihydro-1,4benzoxathiines (**2a**—**e**) and 2,3-dihydro-1,4-benzodithiines (**2f**—**h**), respectively.

The following procedure is typical: compound (1a) was heated at 110 °C with copper(II) bromide (5 mol. equiv.) in diglyme for 1 h. Ether extraction, column chromatography on silica gel, and then distillation gave the 8-methyl compound (2a), together with a very small amount of the 5-methyl derivative. The structure of both products was determined by reduction to phenetole derivatives with Raney nickel.

In the reactions of the alkyl substituted monothioacetals (1a-e) with copper(II) bromide, bond cleavage occurred smoothly between carbon and sulphur rather than between carbon and oxygen, and the sulphur-migration products (2a-e) were formed. In the case of the dithioacetals (1f-h),

Table 1. Reaction of cyclohexanone mono- and di-thioacetals (1) to give benzoxathiines and benzodithiines (2).

Starting acetal	Substituents					Product (2) ^a	
						%	B.p., t/°C
(1)	Х	\mathbb{R}^1	\mathbb{R}^2	R ³	R⁴	Yield	(p/mmHg)
(1 a)	0	Me	Н	Н	Н	51b	106-108 (3.5)
(1b)	0	Н	Н	Me	н	44 ^b	113-115 (3.5)
(1c)	0	Me	Н	Н	Me	35	107 - 108(3.0)
(1d)	0	Н	Me	н	Me	68	110-112 (2.5)
(1e)	0	Pri	Н	н	Me	45 ^b	101-103 (2.0)
(1f)	S	Me	Н	Н	Н	66	109-111 (1.0)
(1g)	S	Me	Н	н	Me	78	124-126 (3.0)
(1h)	S	Pri	н	Н	Me	47	127-129 (3.5)

^a Satisfactory elemental analyses and spectroscopic data were obtained for all compounds; isolated yields are given. ^b Oxygen-migration products were obtained in minor quantities.

the reaction was carried out in dioxane under refluxing conditions.

The present reaction, utilizing readily available starting materials, thus affords an improved one-pot method for synthesising these heterocyclic compounds with alkyl groups in the desired positions.

Received, 23rd July 1985; Com. 1079

References

- 1 D. Greenwood and H. A. Stevenson, J. Chem. Soc., 1953, 1514.
- M. Muhlstadt, N. Stransky, A. Seifert, E. Kleinpeter, and H. Meinhold, J. Prakt. Chem., 1978, 320, 113.
- W. E. Parham, T. M. Roder, and W. R. Hasek, J. Am. Chem. Soc., 1953, 75, 1647.
- 4 J. Nakayama, H. Fukushima, R. Hashimoto, and M. Hoshino, J. Chem. Soc., Chem. Commun., 1982, 612.