Stereochemistry of the Generation of the Ethyl Group in Bacteriochlorophyll a Biosynthesis

Vincent C. Emery and Muhammad Akhtar*

Department of Biochemistry, University of Southampton, Southampton SO9 3TU, U.K.

It is shown that the C-8 ethyl group of bacteriochlorophyll *a* (5) is formed by the addition of hydrogen to C-8¹ from the *si*-face of the corresponding double bond [4; $\Delta(8^1, 8^2)$]; this observation, when taken in conjunction with the previous finding regarding the stereochemistry of hydrogen addition to C-8², reveals that the overall saturation process occurs *via* the formal *trans*-addition.

(9) For data see Table 1

Scheme 1. The fate of ³H in the incorporation of (2R,3R)- $[2-^{3}H,3-^{3}H;2,3-^{14}C_{2}]ALA$ (1, • = ¹⁴C) into bacteriochlorophyll *a* (5, • = ¹⁴C) and thence into propionate. (a) In this ALA-dehydratase catalysed reaction a ³H from one of the units of ALA is lost. (b, c) The labelled atoms are unaffected in these reactions. (d) The protons in the C-3¹ and C-8¹ H_{si} positions are removed in the formation of the two vinyl groups in rings A and B. (e) This multistep transformation is attended by the loss of one ³H in the formation of the C-4 acetyl group and another in the creation of the ring-E carbonyl group at C-13¹. The status of the hydrogen atom in the formation of the position 13² is not known, but the ³H:¹⁴C data indicate the retention of ³H at this position. (f) As expected, oxidative degradation proceeds without loss of labelled atoms from ring B. (g) O₃ gave propionate which was either converted into the 4-bromophenacyl derivative for the determination of the ³H: ¹⁴C ratio or propionyl CoA for enzymic carboxylation. (h) (8) was converted into (9) by successive treatment with Ni/H₂; CH₂N₂; and NH₂NH₂.

Table 1. The ${}^{3}H{}^{:14}C$ ratios of 3-hydroxyisobutyric acid hydrazide (9) obtained following carboxylation of propionate derived from ALA stereospecifically (two independent incorporation experiments) or randomly tritiated at C-2 and C-3 or for several control incubations consisting of propionate randomly tritiated at C-2 only. The ${}^{3}H{}^{:14}C$ ratios for each experimental sample run should be examined vertically.

	³ H: ¹⁴ C ratio of the degradation bacteriochlorophyll <i>a</i> derive (2 <i>R</i> ,3 <i>R</i>)-[2- ³ H,3- ³ H; • 2,3- ¹⁴ C ₂]ALA				r product of ed from: (2RS,3RS)- [2- ³ H ₂ ,3- ³ H ₂ ; 2,3- ¹⁴ C ₂]ALA		³ H: ¹⁴ C ratio of control propionate and its carboxylation product [2- ³ H ₂ ;2- ¹⁴ C]propionate			
(a) Propionate	8.25	8.25	15.50	14.10	13.11	13.11ª	4.0	4.0	5.1	5.1
(b) 3-Hydroxyisobutyric acid hydrazide	4.05	3.71	6.80	6.76	8.62	8.44	2.0	1.8	2.6	2.61
% Decrease in ³ H: ¹⁴ C ratio in the conversion (a) \rightarrow (b)	51	55	56.2	52.1	34.3	35.6	50	55	51	51.2

^a Propionate obtained from this type of experiment will contain one stereospecifically located ³H at C-2, and two ³H atoms at C-3.

mechanistic aspect of the generation of the ethyl group is the stereochemistry of hydrogen addition at each centre of the B-ring vinyl group precursor and thus the overall steric course of the saturation process. Battersby and co-workers² have shown that hydrogen addition at C-8² of the C-8 vinyl group $[\Delta(8^1, 8^2)]$ occurs from the bottom face of the double bond, as illustrated in structure (4).

We envisaged that the experimental protocols developed during our previous investigations on porphyrin and bacteriochlorophyll *a* biosynthesis^{3,4} would enable the selective and facile probing of the stereochemistry of hydrogen addition to C-8¹ of the vinyl group and hence describe the overall steric course of hydrogenation of $\Delta(8^1,8^2)$ during bacteriochlorophyll *a* biosynthesis in *Rhodopseudomonas spheroides*.

(2R,3R)- $[2-^{3}H,3-^{3}H;2,3-^{14}C_2]$ -5-aminolaevulinic acid³ (1, ALA) was incorporated into bacteriochlorophyll *a* (5) over a 12 h period by cultures of *R. spheroides* growing semianaerobically in the light (incorporation *ca.* 20%). After purification of the photosynthetic pigment, magnesium and the phytyl side chain were removed by methanolysis and the B-ring aromatised⁵ to produce a chlorin which, upon chromic acid oxidation, yielded the B-ring as ethyl(methyl)maleimide (6). Conditions for the efficient ozonolytic degradation of ethyl(methyl)maleimide without tritium labilisation have previously been established in our laboratory,⁴ and using this method ethyl(methyl)maleimide was degraded and the resulting acetic acid and propionic acid were characterised as their 4-bromophenacyl esters.

The merit of the degradative scheme utilised (*vide supra*) is that the propionic acid so derived is directly comparable to the C-8 ethyl group of bacteriochlorophyll *a* (see Scheme 1); thus the stereochemical processes that have occurred during the evolution of the ethyl group will be reflected in the distribution of tritium within C-2 and C-3 of the propionic acid. The steric orientation of tritium at C-2 of the latter was determined by utilising propionyl CoA carboxylase⁶ which is known stereospecifically to replace the 2-H_{re} atom of propionyl CoA with a carboxy group to yield (2*S*)-methyl malonyl CoA⁷ which may then be isolated as 3-hydroxyisobutyric acid hydrazide (**9**).

A summary of the ${}^{3}H{}^{14}C$ atomic ratios obtained for ALA, bacteriochlorophyll *a*, ethyl(methyl)maleimide, propionic acid, and methyl malonyl CoA (as hydroxyisobutyric acid hydrazide) along with those theoretically expected from our previous work, are shown in Scheme 1 and Table 1. A comparison of the ${}^{3}H{}^{14}C$ ratios of propionic acid samples with 3-h droxyisobutyric acid hydrazide (Table 1) illustrates that propionic acid samples derived from bacteriochlorophyll *a* synthesised from (2R,3R)-[2- $^{3}H,3$ - $^{3}H;2,3$ - $^{14}C_{2}]ALA$ lost between 50 and 57% of their associated tritium upon incubation with propionyl CoA carboxylase. This result is consistent with the tritium in these samples of propionic acid being resident in the 2- H_{re} position. As expected from this result, propionic acid derived from bacteriochlorophyll *a* synthesised from (2RS,3RS)-[2- $^{3}H_{2},3$ - $^{3}H_{2};2,3$ - $^{14}C_{2}]ALA$ lost between 34 and 36% of its associated tritium upon enzymic carboxylation (Table 1).

On the basis of this localisation, the following regressive analysis can be formulated (Scheme 1). Since the 2-H_{re} atom of propionyl CoA is equivalent to the C-8¹-H_{re} atom of bacteriochlorophyll *a* (5) it follows that the addition of a hydrogen equivalent to C-8¹ of the vinyl group of (4) must have occurred from the *si*-face (top face as shown) forcing the tritium resident at C-8¹ of (4) into the H_{re} position in the reduction product (5). This result, coupled with the demonstration by Battersby and co-workers² that hydrogen addition to C-8² of (4) occurs from the *re*-face of the double bond²† allows the overall steric course of the saturation at $\Delta(8^1, 8^2)$ of (4) to be designated *trans*.

Financial support from the S.E.R.C. is gratefully acknowledged.

Received, 8th August 1985; Com. 1187

References

- 1 For a review see: M. Akhtar and P. M. Jordan, in 'Comprehensive Organic Chemistry,' ed. W. D. Ollis, Pergamon Press, London, 1978, p. 1121.
- 2 A. R. Battersby, A. L. Gutman, C. J. R. Fookes, M. Gunther, and H. Simon, J. Chem. Soc., Chem. Commun., 1981, 645.
- 3 J. S. Seehra, P. M. Jordan, and M. Akhtar, *Biochem. J.*, 1983, **209**, 709.
- 4 G. F. Barnard and M. Akhtar, J. Chem. Soc., Perkin Trans. 1, 1979, 2354; M. Akhtar and C. Jones, Methods Enzymol., Vol. 123, in the press.
- 5 J. M. Golden, R. P. Linstead, and G. H. Whitham, J. Chem. Soc., 1958, 1725.
- 6 P. Diziol, M. Haas, S. W. Graves, and B. M. Babior, Eur. J. Biochem., 1980, 106, 211.
- 7 J. Retey and F. Lynen, Biochem. Z., 1965, 342, 256.

† It should be noted that, because of the pattern of isotopic labelling used in ref. 2, the *si*-face at C-8² in the latter work is equivalent to the *re*-face in structure (4) (magic of the priority rule!).