$[\mathbf{IrH}_{2}(\mathbf{H}_{2})_{2}\mathbf{L}_{2}]^{+}$ { $\mathbf{L} = \mathbf{P}(\mathbf{C}_{6}\mathbf{H}_{11})_{3}$ }: A Non-classical Polyhydride Complex

Robert H. Crabtree and Maryellen Lavin

Department of Chemistry, Yale University, P.O. Box 6666, New Haven, Connecticut 0651 1-81 18, U.S.A.

 $[IrH₅(PC_{Y3})₂]$ (Cy = cyclohexyl) is shown by n.m.r. evidence, including $T₁$ measurements, to undergo protonation to give the title complex, a bis(dihydrogen) dihydride, the first example of a non-classical polyhydride complex.

Recent reports of complexes of molecular hydrogen^{1,2} led us to question3 whether the classical formulation of polyhydride complexes as MH_xL_y , containing terminal M-H bonds only, always applies. We previously showed2 that the classical dihydride IrH2(bq)(PPh3)2 **(1)** is protonated with PhCH- $(SO₂CF₃)₂$ to give the dihydrogen hydride cation [IrH(H₂)- $(bq)(PPh_3)_2$ ⁺ (2). We have now protonated the polyhydride IrH_sL₂ (3) $(L = PCy_3)$ in the same way and report the evidence that leads us to formulate the product as the non-classical polyhydride cation $[\text{IrH}_2(\text{H}_2)_2\text{L}_2]^+$ **(4)**. Like **(2)**, (4) is protonated without loss of H_2 and is stable at -80 °C. Both tend to lose H_2 at room temperature, but can be maintained in a dihydrogen atmosphere. MeCN displaces two molecules of H₂ to give the known $[IrH₂(MeCN)₂L₂]+$. Deprotonation of (4) with NEt₃ [equation (1)] takes place in the absence of excess of H_2 to give back the original complex **(3)** quantitatively at -80 °C.

> Ir $H_2(bq)(PPh_3)_2$ [Ir $H(H_2)($
(1)
Hbq = benzo[h]quinoline $[IrH(H₂)(bq)(PPh₃)₂]$ + (2)

The room temperature 1H n.m.r. spectrum of **(4),** like that of (2) , shows a broad resonance at δ *ca.* -8.3 due to exchange between the Ir-H and Ir(H_2) units. On cooling, two resonances are seen. One, at δ -5.05 [(2) δ -3.0], of intensity 4 is assigned to the $Ir(H_2)$ groups. It is broad, as was found for (2) . A second and narrower resonance at δ -15.2 **[(2)** δ -15.2] and of intensity 2 is also found and assigned to the two classical Ir-H groups. Complex **(4)** is somewhat more fluxional than complex (2) and so the $2J(P,H)$ of the Ir-H group and $1J(H,D)$ coupling of the corresponding HD complex could not be observed even at the lowest accessible temperatures in CD2C12; in no other suitable solvent was **(4)** both stable and soluble. This prevented **us** from observing the value of $U(H,D)$ which had previously been shown^{1,2} to be an excellent spectroscopic criterion for the existence of a dihydrogen ligand.

We therefore looked for another spectroscopic criterion, and determined the apparent T_1 values for both (2) and (4) at -80 °C by the inversion-recovery method. While the T_1 value of 350 ms for the terminal Ir-H in (2) is normal,⁴ the value for the co-ordinate dihydrogen molecule (30 ms) is extremely short for a metal hydride, but comparable to the relaxation time for free molecular hydrogen.5 Since the dipole-dipole contribution to T_1 depends on r^{-6} , the short H-H distance in $M(H_2)$ and in free H_2 itself is consistent with a short T_i ; a spin-rotation contribution may also be involved.⁵ On warming, the apparent T_1 values for the two resonances begin to average before the chemical shifts do so, owing to proton exchange between the $Ir(H₂)$ and IrH sites.

In the more fluxional case of (4), the T_1 values for the Ir(H₂) (48 ms) and IrH (73 ms) resonances are both short.[†] This is consistent with the known higher rate of proton exchange between the two sites in **(4)** compared with **(2).** The weighted average of the two T_1 values observed for (2) at -80 °C is 43 ms, a value comparable to the observed values for **(4).** Depending, as it does, on γ^2 , the dipole-dipole contribution to proton relaxation due to a second nearby nucleus is expected5 to be much smaller if this nucleus is D rather than H.

If H₅L₂
$$
\xrightarrow{\text{H}^+ \atop \text{NE}t_3}
$$
 $\xrightarrow{\text{H}^- \atop \text{N}} \xrightarrow{\text{H}^- \atop \text{M}^+ \atop \text{M}^+}$ $\xrightarrow{\text{MeCN}}$ $\xrightarrow{\text{H}^+ \atop -2H_2}$ If H₂(MeCN)₂L₂⁺ (1)
(4)
L = PCy₃; Cy = cyclohexyl

 \dagger For comparison, the apparent T_1 for IrH₅(PCy₃)₂ under the same conditions (500 MHz, -80 °C) is 870 ms. The field and temperature dependence of the T_1 values suggests that the slow motion regime **applies.**

Accordingly, we find that the apparent relaxation times for the co-ordinated dihydrogen molecule show a marked increase when HD is substituted for H_2 [(2): H_2 , 30 ms; HD, 200 ms. **(4):** *H2,* **48** ms; *HD,* 240 ms]. This confirms the formulation shown, and makes (4) a member of the extensive $[\text{IrH}_2S_2L_2]^+$ series⁶ of cations $(S = H_2O, Me_2CO, RI,$ olefines, and now H_2 ; $L = PR_3$). We suggest the stereochemistry shown for **(4)** on the basis of this analogy.

'Ir H_6L_2 ⁺' is of particular interest because, if formulated as a classical polyhydride , it would be an unprecedented example of Ir^{VII}. This work has shown that it is better thought of as a nonclassical octahedral IrI" complex of the well known $[IrH₂S₂L₂]$ ⁺ type.

We thank \overline{Dr} . A. Siedle for a gift of $PhCH(SO_2CF_3)_2$, Mr. P. Demou for experimental assistance, Professors J. W. Faller, J. Prestegard, and K. Zilm for discussions, and the ARO for support.

Received, 2nd August 1985; Corn. 11 48

References

- 1 G. **J.** Kubas, R. R. Ryan, B. **I.** Swanson, P. J. Vergamini, and J. J. Wasserman, *J. Am. Chem. SOC.,* 1984, 106, 451; R. K. Upmakis, G. E. Gadd, M. Poliakoff, M. **B.** Simpson, J. J. Turner, R. Whyman, and **A. F.** Simpson, J. *Chem. SOC., Chem. Commun.,* 1985, 27; **S.** P. Church, F.-W. Grevels, H. Herman, and K. Schaffner, *ibid.,* 1985, 30.
- 2 R. H. Crabtree and M. Lavin, *J. Chem. SOC. Chem. Commun.,* 1985, 794.
- 3 G. *G.* Hlatky and R. H. Crabtree, *Coord. Chem. Rev.,* 1985,65,1.
- 4 R. H. Crabtree, B. E. Segmuller, and R. J. Uriarte, *Inorg. Chem.*, 1985, **24,** 1949.
- *5* M. **S.** Conradi, K. Luszczynski, and R. E. Norberg, *Phys. Rev. B,* 1979, 19, 20; **J. A.** Pople, W:G. Schneider, and H. J. Bernstein, 'High Resolution Nuclear Magnetic Resonance,' McGraw-Hill, New York, 1959, pp. 202 and 216.
- 6 **J.** R. Shapley, R. R. Schrock, and J. **A.** Osborn, J. *Am. Chem.* SOC., 1969,91,2816; R. **H.** Crabtree, P. *C.* Demou, D. Eden, **J.** M. Mihelcic, C. **A.** Parnell, J. M. Quirk, and G. E. Morris, J. *Am. Chern. SOC.,* 1982, **104,** 6994.