A Simple Synthesis of 4-Aza- λ^5 -phosphinines from Z-1,5-Diaza-2 λ^5 -phosphapenta-1,3-dienes and Dimethyl Acetylenedicarboxylate

José Barluenga*, Fernando Lopez, and Francisco Palacios

Departamento de Química Orgánica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain

4-Aza- λ^5 -phosphinines were synthesized by reaction of Z-1,5-diaza- $2\lambda^5$ -phosphapenta-1,3-dienes (1) with dimethyl acetylenedicarboxylate in acetonitrile.

 λ^5 -Phosphinine heterocycles, most of them symmetrical, are generally prepared from cyclic precursors.¹ Unlike the corresponding λ^3 -derivatives these compounds do not show 'aromatic' behaviour.² However, azaphosphinine derivatives have received little attention. Access to aza- λ^5 -phosphinines has been limited to one synthetic route, which starts with 4-pyran phosphonium salts and leads to symmetrical 1,1,3,5tetraphenyl-4-aza- λ^5 -phosphinines;³ the authors suggest that such heterocycles exhibit aromatic character.

Primary enamines having electron-withdrawing substituents at the β -position are versatile reagents in heterocyclic synthesis.⁴ Likewise, we have shown that β -imino enamines are important key intermediates in the synthesis of acyclic⁵ and heterocyclic⁶ derivatives. Recently, we have synthesized analogous phosphine imines⁷ and we describe here preliminary results on their use as precursors of phosphorus containing heterocycles.

The reaction of the phosphine N-phenylimine (1a) with dimethyl acetylenedicarboxylate (DMAD) in acetonitrile† at room temperature gave after stirring for 6 h the 1:1 adduct $(2a) [\delta_{H}(80 \text{ MHz}, \text{CDCl}_{3}) 2.26(s, 3H, \text{Me}), 3.16(s, 3H, \text{OMe}),$ 3.39(s, 3H, OMe), 4.57(d, 1H, =CH, ${}^{2}J_{PH}$ 14.2 Hz), and $6.16-7.93(m, 19H, ArH, NH_2); \delta_{C}(80 \text{ MHz}, CDCl_3)$ 21.0(Me), 49.6(OMe), 51.2(OMe), 60.8(d, ylide C=P, ${}^{1}J_{PC}$ 109.7 Hz), 67.7(d, C_{α} , ${}^{1}J_{PC}$ 102.8 Hz), 120.4—149.9(24 ArC), 161.1(d, C_{β} , ${}^{2}J_{PC}$ 1.9 Hz), 161.7(d, C=N, ${}^{2}J_{PC}$ 3.0 Hz), 166.9(d, CO, ²J_{PC} 12.6 Hz), and 168.6(d, CO, ³J_{PC} 12.6 Hz); δ_P(80 MHz, CDCl₃, 85% H₃PO₄ standard) 3.9 p.p.m.; *m/z* 550(M)]. Compound (2), by analogy with simple phosphineimines,⁸ is formed through 2 + 2 cycloaddition of the P=N linkage of (1) to the carbon-carbon triple bond of DMAD, to give the non-isolable 1-aza-2-phosphete followed by an electrocyclic ring opening. The process is favoured by the use of a polar solvent9 such as acetonitrile.

Heating (2a) at 80 °C allows the cyclocondensation with loss of aniline giving the 4-aza- λ^5 -phosphinine (3a) [$\delta_H(80 \text{ MHz},$

CDCl₃) 2.31(s, 3H, Me), 3.49(s, 3H, OMe), 3.87(s, 3H, OMe), 5.33(d, 1H, =CH,²J_{PH} 11.0 Hz), and 6.63—7.95(m, 14H Ar); $\delta_{C}(80 \text{ MHz}, \text{CDCl}_{3})$ 20.8(Me), 50.6(OMe), 52.1 (OMe), 67.0(C-2, ¹J_{PC} 107.1 Hz), 76.5(C-6, ¹J_{PC} 90.6 Hz), 126.5—139.4(18 ArC), 160.5(C-3, ²J_{PC} 3.6 Hz), 161.8(C-5), 166.7(CO, ²J_{PC} 10.7 Hz), and 168.7(CO, ³J_{PC} 14.5 Hz); $\delta_{P}(80 \text{ MHz}, \text{CDCl}_{3})$ 1.2 p.p.m.; m/z 457(M)] in excellent yield (90%). Similarly, (**2b**) and (**3b**) were obtained from (**1b**). Heterocycles (**3a,b**) were also synthesized in one step when (**1a,b**) were treated with DMAD in acetonitrile at reflux. Table 1 summarises the yields and m.p.s for the new compounds. However, when (**1c**—e) R¹ ≠ H were used as starting material at room temperature, the reaction underwent direct cyclocondensation to 4-aza- λ^5 -phosphinines (**3c**—e), without isolation of the intermediate (**2**).

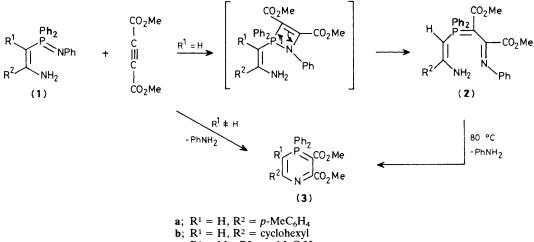

The n.m.r. spectral data of compounds (3) indicate that they have no aromatic character. Thus, the H_{α} signal in (3a) is shifted to a higher field ($\delta_{\rm H}$ 5.33, ¹J_{PH} 11.0 Hz) compared to that of H_{α} in 3,5-diphenyl-4-aza- λ^3 -phosphine¹⁰ ($\delta_{\rm H}$ 8.66, ¹J_{PH} 18 Hz), a result in accord with that observed in other λ^3 and λ^5 -phosphinines.² Likewise, the large ¹J_{PC} coupling constant of C-2 (107.1 Hz) and C-6 (90.6 Hz) as well as the

Table 1. M	Lp.s and	vields of	derivatives	(2)	and ((3)	

Compounda	m.p./°C	Yield/%
(2 a)	166	86
(2b)	179	82
(3a)	228229	80(90) ^ь
(3b)	186	77(88) ^b
(3c)	209210	76
(3d)	210-211	79
(3e)	215-216	78

^a All new compounds reported here gave satisfactory elemental analyses. ^b Yield from (2).

[†] When benzene was used as solvent the starting material was recovered.

a, R = H, R = p (R = p) b; $R^1 = H$, $R^2 = cyclohexyl$ c; $R^1 = Me$, $R^2 = p$ -MeC₆H₄ d; $R^1 = CH_2$ =CHCH₂, $R^2 = p$ -MeC₆H₄ e; $\chi^1 = CH_2$ Ph, $R^2 = cyclohexyl$

high field chemical shifts (δ 66.5 for C-2, 76.5 for C-6) observed in ¹³C n.m.r. spectrum appear to be an approximate measure of the degree of positive character at the phosphorus atom.²

Received, 31st July 1985; Com. 1127

References

- 1 For a review see L. D. Quin, 'The Heterocyclic Chemistry of Phosphorus,' J. Wiley and Sons, New York, 1981, p. 147.
- 2 K. Dimroth, Acc. Chem. Res., 1982, 15, 58.
- 3 M. H. Mebazaa and M. Simalty, Tetrahedron Lett., 1972, 4363.

- 4 B. F. Feringa, J. Chem. Soc., Chem. Commun., 1985, 466; I. Tokumutzu and T. Hayashi, J. Org. Chem., 1985, 50, 1547.
- 5 J. Barluenga, J. Jardón, and V. Gotor, *J. Org. Chem.*, 1985, **50**, 802; J. Barluenga, B. Olano, and S. Fustero, *J. Org. Chem.*, 1983, **48**, 2255.
- 6 J. Barluenga, J. Jardón, V. Rubio, and V. Gotor, J. Org. Chem., 1983, 48, 1379 and references therein cited; J. Barluenga, J. Jardón, F. Palacios, and V. Gotor, Synthesis, 1983, 371; ibid., 1985, 309.
- 7 J. Barluenga, F. Lopez, and F. Palacios, J. Chem. Res., 1985, (S) 211, (M) 2541.
- 8 G. W. Brown, R. C. Cookson, and I. D. R. Stevens, *Tetrahedron Lett.*, 1964, 1263; J. Bellan, M. P. Marre, M. Sanchez, and R. Wolf, *Phosphorus Sulfur*, 1981, **12**, 11.
- 9 R. Huisgen, Pure Appl. Chem., 1980, 52, 2283.
- 10 G. Märkl and D. Matthes, Angew. Chem., 1972, 84, 1069.