The Influence of Inorganic Phosphate on the Crystallization of Magnetite (Fe_3O_4) From Aqueous Solution

Suzanne B. Couling and Stephen Mann*

School of Chemistry, University of Bath, Bath BA2 7AY, U.K.

The formation of magnetite (Fe_3O_4) from the oxidation of Fe^{II} solutions results in small (20—60 nm) irregular-shaped crystals; in the presence of 5—10% inorganic phosphate P^I the crystal morphology is selectively enhanced whilst at 20—30% P^I-doping crystallization is severely inhibited.

Magnetite (Fe₃O₄) is an important component of numerous catalytic and magnetic systems. Functional specificity in these applications often requires the controlled growth of crystals of well defined morphology and size; properties which are difficult to obtain under laboratory conditions. In contrast, biological systems can synthesize magnetite crystals at ambient temperature and neutral pH with precise crystallochemical characteristics.^{1,2} We are involved in the elucidation of processes which modulate crystal growth processes in magnetite and report here, for the first time to our knowledge, the influence of inorganic phosphate (PO₄³⁻, = Pⁱ) on laboratory preparations of Fe₃O₄ formed by the partial oxidation of Fe^{II} solutions in the presence of NO₃⁻. Magnetite was prepared under N₂ at 100 °C by the slow

Magnetite was prepared under N₂ at 100 °C by the slow addition (*ca.* 0.5 ml min⁻¹) of a solution containing 0.1 mol KOH and 0.008 mol KNO₃ dissolved in 30 cm³ of deoxygenated distilled water to 70 cm³ of a boiling deoxygenated solution containing FeCl₂ · 4H₂O (0.514 M). A green gelatinous solid was immediately precipitated which turned blue and then black on continued addition of the OH^-/NO_3^- solution. The pH and dissolved Fe concentration were determined at 10 min intervals. The pH remained essentially constant (*ca.* 6.0) as the dissolved Fe concentration fell rapidly

Table 1. E.d.x.a. d	data (weight)	% element) fo	or magnetite samples. ^a
---------------------	----------------	---------------	------------------------------------

	Dopant level (atom % P)					
Element	0	5	10	20	30	
Fe	67.53	70.29	66.33	70.26	67.73	
0	25.15	26.85	25.33	26.17	25.22	
P		0.95	2.08	1.14	2.06	

^a Elements Al (sample holder), Si (silicone grease), and K (residual KOH/KNO₃) were also present in trace amounts giving a total weight % of 100 for each sample.

Figure 1. Electron micrographs of magnetite prepared in (a) the absence of P^i , bar = 120 nm, and (b) the presence of 5% P^i , bar = 105 nm.

Figure 2. I.r. spectra of magnetite prepared in the presence of 10% Pⁱ; peak A, v(FeO-P); peaks B and C, v(FeO-Fe).

on continued addition of the OH^-/NO_3^- solution. Complete removal of soluble Fe was accompanied by a rapid rise in pH to 13. At this stage (*ca.* 50 min) the precipitate was black and magnetic.

The resulting magnetite crystals were characterised by X-ray diffraction (x.r.d.), i.r., electron microscopy, energydispersive X-ray analysis (e.d.x.a.), and chemical (titrimetric) analysis. The synthesis was repeated in the presence of 5, 10, 15, 20, and 30 mol% KH₂PO₄ added to the Fe^{II} solution prior to OH⁻/NO₃⁻ addition.

Magnetite crystals grown in the absence of P^i were irregular in morphology (Figure 1a). Crystal sizes were in the range 20-60 nm. I.r. spectra showed two bands at 570 and 340 cm⁻¹. X.r.d. and chemical analysis indicated that the major phase was stoicheiometric magnetite with a trace amount of γ -Fe₂O₃ (maghemite) formed probably by surface oxidation during analytical procedures. In contrast, crystals grown in the presence of 5 and 10 mol% Pⁱ had well defined octahedral habits with smooth {111} faces (Figure 1b). Crystal sizes were 50—100 nm. Electron and X-ray diffraction showed the products to be well ordered cubic Fe₃O₄ with no modification in unit cell size. I.r. spectra showed an additional band at 950 cm⁻¹ (Figure 2) corresponding to the P–O–Fe symmetric stretch.³ E.d.x.a. results (Table 1) showed the presence of Pⁱ within the samples.

At higher Pⁱ concentrations (20 and 30%) magnetite crystallization was severely inhibited. The product was a brown gel which rapidly oxidised on isolation to α -FeOOH and ferrihydride (Fe₂O₃·*n*H₂O).

Fe₃O₄ formation proceeds via a green rust intermediate which undergoes further oxidation, dehydration, and structural modification prior to crystallization.⁴ The changes in morphology and ultimately, composition and structure, in the presence of Pⁱ can be attributed to two possible mechanisms both of which reduce the crystal growth rate of Fe_3O_4 ; (a) stabilization of the green rust precursor and (b) stabilization of specific crystal faces of magnetite. Since there is significant lattice rearrangement during the transformation of green rust to magnetite a dissolution-renucleation mechanism is favoured.⁴ Binding of Pⁱ to the precursor would reduce the transformation rate by surface stabilization. Similarly the close-packed {111} faces of Fe₃O₄ have a high density of Fe-tetrahedral sites at which Pi can be readily adsorbed thereby inhibiting the growth rate along the [111] direction and enhancing the well-defined octahedral habit. Our i.r. and e.d.x.a. results clearly show that Pⁱ is present, presumably at the crystal surface of the Pⁱ doped samples. Inhibition of Fe₃O₄ crystallation at high (20–30 mol%) Pⁱ concentration indicates the increased kinetic stability of the green rust precursor with respect to undergoing phase transformation. Stabilization of the Fe^{II} oxidation state within the Fe₃O₄

structure is no longer possible and the gel rapidly oxidises to Fe^{III} hydrated oxides on contact with air.

Our results indicate that inorganic phosphate has a subtle influence on the crystallization of Fe_3O_4 from Fe^{II} solution. We note that bacterial Fe_3O_4 formation occurs within phosphate rich media in the presence of Fe^{II} , with NO_3^- as a possible electron acceptor.⁵ Control over phosphate levels may therefore be an important factor in establishing unique Fe_3O_4 morphologies in these biological systems.

Received, 15th July 1985; Com. 1001

References

- 1 S. Mann, T. T. Moench, and R. J. P. Williams, Proc. R. Soc. London, B, 1984, 221, 385.
- 2 S. Mann, R. D. Frankel, and R. P. Blakemore, *Nature (London)*, 1984, **310**, 405.
- 3 R. L. Parfitt, J. D. Russell, and V. C. Farmer, J. Chem. Soc., Faraday Trans. 1., 1976, 72, 1082.
- 4 T. Misawa, K. Hashimoto, and S. Shimodaira, Corros. Sci., 1974, 14, 131.
- 5 D. A. Bazylinski and R. P. Blakemore, Appl. Environ. Microbiol., 1983, 46, 1118.