Configurationally Chiral Dirhenium Complexes with Triple and Quadruple Re–Re Bonds: Preparation and Circular Dichroism of $[Re_2CI_4(S,S-dppb)_2]^{\dagger}$ and $[Re_2CI_4(S,S-dppb)_2]^{2+}$

lain F. Fraser and Robert D. Peacock*

Department of Chemistry, The University, Glasgow G12 800, U.K.

The first configurationally chiral dirhenium complexes have been prepared and spectroscopically characterised; the c.d. spectrum of the quadruply bonded $[\text{Re}_2\text{Cl}_4(S,S\text{-dppb})_2]^{2+}$ implies that the complex has the Λ absolute configuration with a twist of less than 45°.

 $[\text{Re}_2\text{Cl}_4(\text{dppe})_2]$ [dppe = 1,2-bis(diphenylphosphino)ethane] (1) has the $\sigma^2 \pi^4 \delta^2 \delta^{*2}$ electron configuration and so a Re-Re triple bond. The complex, which has bridging dppe ligands, has a staggered geometry¹ (Figure 1) with a twist of 51° between the two ReP₂Cl₂ units. Compounds containing a Re-Re triple bond are electron rich and may be oxidised²⁻⁴ to the mono- or di-cations which have Re-Re bond orders of 3.5 and 4 respectively. The redox potentials of (1) in MeCN have been measured by cyclic voltammetry³ $[E_{k}(1) = +0.23 \text{ V},$ $E_{i}(2) = +1.06 \text{ V vs. S.S.C.E.}^{\dagger}$ and (1) has been oxidised to the monocation by [NO][PF₆] ($E_{\frac{1}{2}} = +0.85$ V vs. Ag/Ag⁺, + 1.18 V vs. S.S.C.E.).^{5,6} We report that both (1) and the novel chiral dirhenium complex $[\text{Re}_2\text{Cl}_4(S, S-\text{dppb})_2]^{\dagger}$ (2) may be oxidised to the respective dications by $[\text{NO}][\text{PF}_6]$ in MeCN or CH₂Cl₂ solution. These are the first examples of twisted dirhenium complexes with a formal quadruple Re-Re bond and (2) and $(2)^{2+}$ are the first configurationally chiral dirhenium complexes to be reported.

> $[Re_2Cl_4L_2]$ (1) L = dppe (Ph_2PCH_2CH_2PPh_2) (2) L = S,S-dppb (S,S-Ph_2PCHMeCHMePPh_2)

Addition of $[NO][PF_6]$ to CH_2Cl_2 solutions or MeCN suspensions of (1) or (2) produces olive-green solutions of the dications (1)²⁺ or (2)²⁺ which are isolated as the $[PF_6]^-$ salts by removal of solvent *in vacuo*. The absorption spectra of (2) and (2)²⁺ are shown in Figure 2; the absorption spectra of (1) and (1)²⁺ are similar. Evidence that we have synthesised the dications is furnished by the presence of a band at 950 nm in

Figure 1. Schematic structure of (1).

 \dagger dppb = 2,3-bis(diphenylphosphino)butane; S.S.C.E. = standard sodium chloride calomel electrode.

the electronic spectrum of $(2)^{2+}$ which is assigned to the $\delta \rightarrow$ δ^* transition [(2)²⁺ having the $\delta^2 \pi^4 \delta^2$ configuration]. This transition is necessarily absent (Figure 2) for the neutral complexes which have the δ^* orbital doubly occupied and occurs at around 1500 nm in the monocations.[‡] The red shift in the energy of the $\delta \rightarrow \delta^*$ transition of the staggered complex $(2)^{2+}$ compared to its position in eclipsed [Re₂Cl₄(PMe₂- Ph_{4}^{2+} (10.5 and 13.8 × 10³ cm⁻¹ respectively) is similar to that found in the analogous dimolybdenum complexes.^{7,8} The c.d. of the $\delta \rightarrow \delta^*$ transition of (2)²⁺ has the same sign and a comparable dissymmetry factor $(\Delta A/A)$ to that of $[Mo_2Cl_4(S, S-dppb)_2]$.⁷ The latter complex has the A absolute configuration with a twist of 23° about the Mo-Mo bond.7 The dirhenium complex is predicted to have a similar structure, the S,S-dppb ligands dictating the Λ absolute configuration and the c.d. indicating^{7,9} a twist of less than 45°.

The dications have different chemical behaviour in CH_2Cl_2 and MeCN solution. The CH_2Cl_2 solutions slowly turn pink to give an unidentified product which cannot be reoxidised. In MeCN, however, the green solutions of $(1)^{2+}$ and $(2)^{2+}$ slowly turn purple giving the monocations $(1)^+$ and $(2)^+$ (identified by their absorption spectra). The reaction is reversible and the solutions of $(1)^+$ and $(2)^+$ may be reoxidised by more [NO]-[PF₆]. The conversions $(1), (2) \rightleftharpoons (1)^+, (2)^+ \rightleftharpoons (1)^{2+}, (2)^{2+}$ can also be effected electrochemically using an optically

Figure 2. Absorption and c.d. spectra of (2) (dashed line) and $(2)^{2+}$ (full line) in CH₂Cl₂ solution.

[‡] The δ → δ* transition is found at 1360 nm in [Re₂Cl₄(PMe₂Ph)₂]+ (ref. 4). It has not been located in the spectra of the monocations of twisted dirhenium complexes, such as (1)+, presumably because it is too weak.

transparent electrode and the absorption and c.d. spectra thus obtained are identical to those of the chemically produced species.

We thank the S.E.R.C. for a studentship (to I. F. F.)

Received, 24th July 1985; Com. 1081

References

- 1 F. A. Cotton, G. G. Stanley, and R. A. Walton, *Inorg. Chem.*, 1978, 17, 2099.
- 2 P. Brant, D. J. Salmon, and R. A. Walton, J. Am. Chem. Soc., 1978, 100, 4424.

- 3 P. Brant, H. D. Glicksman, D. J. Salmon, and R. A. Walton, *Inorg. Chem.*, 1978, 17, 3203.
- 4 F. A. Cotton, K. R. Dunbar, L. R. Falvello, M. Tomas, and R. A. Walton, J. Am. Chem. Soc., 1983, 105, 4950.
- 5 M. T. Mocella, M. S. Okamoto, and E. K. Barefield, Synth. React. Inorg. Met.-Org. Chem., 1974, 4, 69.
- 6 G. M. Anderson, J. Iqbal, D. W. A. Sharp, J. M. Winfield, J. H. Cameron, and A. G. McLeod, J. Fluorine Chem., 1984, 24, 303.
- 7 P. A. Agaskar, F. A. Cotton, I. F. Fraser, and R. D. Peacock, J. Am. Chem. Soc., 1984, 106, 1851.
- 8 The $\delta \rightarrow \delta^*$ transition occurs at 17.0 × 10³ cm⁻¹ in [Mo₂Cl₄-(PBuⁿ₃)₄] (V. M. Minkowski, R. A. Goldbeck, D. S. Kliger, and H. B. Gray, *Inorg. Chem.*, 1979, **18**, 86) and at 13.7 × 10³ cm⁻¹ in [Mo₂Cl₄(*S*, *S*-dppb)₂] (ref. 7).
- 9 I. F. Fraser and R. D. Peacock, Inorg. Chem., 1985, 24, 989.