Unimolecular Alcoholysis of Organosilicon Halides of the Type (Me₃Si)₂C-(SiMe₂OMe)(SiR'₂X). Anchimeric Assistance by and Migration of the OMe Group

Colin Eaborn,* Paul D. Lickiss, Sabah T. Najim, and M. Novella Romanelli

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

The compound $R_2C(SiMe_2OMe)(SiMe_2CI)$ ($R=SiMe_3$ throughout) reacts more rapidly with CF_3CH_2OH than with MeOH, and $R_2C(SiMe_2OMe)(SiPh_2Br)$ reacts with EtOH to give exclusively the rearranged product $R_2C(SiMe_2OEt)(SiPh_2OMe)$, indicating that the rate-determining step of the solvolyses involves formation of a methoxy-bridged cation; migration of the OMe group also occurs in the reaction of the bromide with AgBF₄.

Organosilicon iodides of the type $R_3CSiR'_2I$ ($R = SiMe_3$ throughout), in which steric hindrance greatly inhibits direct nucleophilic attack at the functional silicon centre, react with silver salts AgY to give wholly (R' = Ph) or in part (R' = Et) rearranged products of the type $R_2C(SiR'_2Me)(SiMe_2Y)$, and it is thought that the reactions proceed *via* the bridged cations (1, Z = Me). Analogous rearrangement occurs in the trifluoracetolysis of R_3CSiEt_2I , which thus appears to involve rate-determining ionization to a bridged cation of type (1, Z = Me; R' = Et). In these reactions the migrating Me group is assumed to provide anchimeric assistance to the leaving of I^- .

The methanolysis of R_3CSiMe_2X compounds with X = I, $OClO_3$, or OSO_2CF_3 , is known not to be significantly accelerated by the presence of $NaOMe_2$, and so at first it seemed likely that this reaction also involved anchimerically-

assisted formation of the bridge cation (1; R' = Me), but (a) solvolysis was much slower in the more electrophilic solvent CF_3CH_2OH , in which ionization would be expected to occur more readily, and (b) the hydrolysis and methanolysis of R_3CSiEt_2I were found to proceed without rearrangement.⁴ It thus appears that the reaction does not proceed through a cation, and that the solvent is nucleophilically involved in the rate-determining step,⁴ possibly in nucleophilic solvation in an S_N2 (intermediate) type of process.⁵

In the hope of observing rate-determining unimolecular cleavage of a silicon-halogen bond in alcoholysis without nucleophilic participation by the solvent we turned to compounds of the type $R_2C(SiMe_2OMe)(SiR_2X)$, in which the γ -OMe group could be expected to lead to much more stable bridged ions of the type (1, Z = OMe). (Compare the

(1) $R = SiMe_3$

calculations by Kos and Schleyer quoted in ref. 6.) The methoxychloride $R_2C(SiMe_2OMe)(SiMe_2Cl)$ was previously shown to undergo methanolysis > 10^6 times as rapidly as R_3CSiMe_2Cl , 6 and we have now found that (a) its rate of reaction with 9:1 v/v MeOH–dioxane is not very sensitive to the presence of NaOMe (the half-lives, measured by n.m.r. spectroscopy, at 35 °C with 0.00, 0.08, 0.16, 0.32, and 0.64 M NaOMe were 7.5, 5.1, 4.4, 6.1, and 6.4 min, respectively), and (b) its reaction with 8:1 v/v CF₃CH₂OH–dioxane [in which the alcohol:dioxane molar ratio is similar to that in the mixture in (a)], to give $R_2C(SiMe_2OMe)(SiMe_2OCH_2CF_3)$, is markedly faster, being complete before the first measurement can be made, i.e. in < 45 s; there is a subsequent slower reaction, to give $R_2C(SiMe_2OCH_2CF_3)_2$, which does not occur in the presence of Et₃N.

We have furthermore found that the reaction of R₂C(SiMe₂OMe)(SiPh₂Br) with EtOH for 5 min at room temperature gives a single product [m.p. 168 °C; δ_H (CCl₄) 0.10 (s, SiMe₂), 0.18 (s, SiMe₃), 1.32 (t, CH₂Me), 3.55 (s, OMe), 3.65 (q, CH₂), and 7.2-8.0 (m, Ph)], which has been shown by X-ray diffraction⁷ to be the rearranged species R₂C(SiMe₂OEt)(SiPh₂OMe). (The same product is formed in the reaction with AgClO₄ in EtOH.) It can thus be assumed that the reactions proceed via cations of type (1, Z = OMe); R' = Me, or Ph), which are rapidly attacked by the solvent nucleophile at the less hindered end of the bridge. It seems that there can be rate-determining ionization in these crowded systems of the type $R_2C(SiMe_2Z\bar{)}(SiR'_2X)$ if there is either a weak bridging group (Z) such as Me in association with a strongly electrophilic solvent such as CF₃CO₂H, or a powerful bridging group such as OMe in association with a more weakly electrophilic solvent such as MeOH, and presumably some intermediate combinations would also be effective.

Predominant, but not complete, rearrangement occurred when $R_2C(SiMe_2OMe)(SiPh_2Br)$ was treated with $AgBF_4$ in Et_2O , the product being a 4:1 mixture of $R_2C(SiMe_2F)(Si-Ph_2OMe)$ [for $SiMe_2F$, δ_H 0.22 (d), δ_F -138.1 p.p.m.] and $R_2C(SiMe_2OMe)(SiPh_2F)$ [for $SiMe_2OMe$, δ_H 0.11 (s); for $SiPh_2F$, δ_F -161.3 p.p.m.].

The observation that with sufficient anchimeric assistance alcoholysis of organosilicon halides can take place without nucleophilic involvement of the solvent in the rate-determining step extends the analogy between mechanisms of substitution at a saturated carbon atom and those at a sterically hindered silicon atom. 4 It will be of interest to see whether variations in the nature of the solvent affect such reactions of organosilicon halides in the way they do $S_{\rm N}1$ reactions of organic halides. 8

We thank the S.E.R.C. for support, the Iraqi Ministry of Higher Education and the University of Basrah for the award of a postgraduate scholarship (to S. T. N.), and Mr. N. H. Buttrus and Dr. P. B. Hitchcock for the X-ray structural determination.

Received, 14th August 1985; Com. 1218

References

- C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet., Chem., 1980, 188, 179.
- 2 C. Eaborn and F. M. S. Mahmoud, J. Chem. Soc., Perkin Trans. 2, 1981, 1309.
- S. A. I. Al-Shali, C. Eaborn, and F. M. S. Mahmoud, J. Organomet. Chem., 1982, 232, 215.
- 4 S. A. I. Al-Shali, C. Eaborn, F. A. Fattah, and S. T. Najim, J. Chem. Soc., Chem. Commun., 1984, 318.
- 5 T. W. Bentley and G. E. Carter, J. Am. Chem. Soc., 1982, 104, 5741.
- 6 C. Eaborn and D. E. Reed, J. Chem. Soc., Chem. Commun., 1983, 495.
- 7 N. H. Buttrus and P. B. Hitchcock, personal communication.
- 8 T. W. Bentley, G. E. Carter, and K. Roberts, J. Org. Chem., 1984, 49, 5183