Cytochrome c Oxidase Models. A μ -Imidazolato Complex from Copper(II) and Tetra**phenylporphyrinatomanganese(1i) with the Magnetic and E.S.R. Signature of the Cytochrome c Oxidase Active Site**

Vinai Chunplang and Lon J. Wilson"

The Department of Chemistry, William Marsh Rice University, P.O. Box 7892, Houston, Texas 77257, U.S.A.

A μ -imidazolato heterobimetallic compound derived from an imidazolate-bearing Cu^{ll} complex $(S = 1/2)$ and [Mnll(TPP)] *(S* = 5/2) possesses the magnetic and e.s.r.-silent signature of the cytochrome c oxidase active site in its resting state; as such, the $[Mn(imidazolato)Cu]+$ centre appears to mimic electronically the binuclear $[Cu₁²⁺ (S =$ 1/2)/Cyt. a_3^{3+} (S = 5/2)] active site of the enzyme.

Cytochrome c oxidase, as the terminal enzyme in the electron-transfer chain of aerobes, catalyses the $4e^-$ reduction of dioxygen to water $(O_2 + 4H^+ + 4e^- \rightarrow 2H_2O + energy)$, with the energy being stored in the ADP-ATP cycle.1 The enzyme contains two haems and two copper sites, with the active site being binuclear in one haem $(Cyt. a₃)$ and one copper (Cu_u) . Much recent interest has focused on the electronic and structural properties of this heterobimetallic site, especially with the enzyme in its fully-oxidized or resting state. In this state, the binuclear $\left[\text{Cu}_{u}\right]^{2}/\text{Cyt}$. a_{3}^{3+} site exhibits magnetic and e.s.r.-silent properties commensurate with an *S* = 2 ground state, arising presumably from strong antiferromagnetic coupling $(-J \ge 200 \text{ cm}^{-1})$ between $S = 1/2$ (Cu_u²⁺) and $S = 5/2$ (Cyt. a_3^3 ⁺).^{2,3} A Mössbauer spectroscopic study of 57Fe-enriched oxidase from a bacterial source *(Thermus thermophilis*)⁴ has challenged the $S = 2$ assignment of earlier magnetic susceptibility measurements, but we have recently reaffirmed the earlier susceptibility results for three different preparations of bovine resting oxidase.5

Biochemically reasonable bridges, *i.e.* $[Cu_u²⁺-(B)-$ Cyt. a_3^{3+} , such as B = imidazolato (imid-) from histidine,⁶ oxo from O_2 , H_2O , or tyrosine,^{7,8} and mercapto from cysteine^{9,10} have all been proposed as potential mediators of the strong antiferromagnetic coupling between $Cu_u²⁺$ and

Cyt. a_3^{3+} , and several such $\lceil Cu^{2+}-(B)-Fe^{3+} \rceil$ model compounds have been reported by others¹¹⁻²⁰ and ourselves.²¹⁻²⁴ In general, these model compounds have shown $-J \ll 200$ cm^{-1} for $B = imid^-$, and have thus argued in favour of a single atom bridge instead of a multi-atom case like imidazolate. In this communication we report a $B = imid$ model compound derived from $S = 5/2$ tetraphenylporphyrinatomanganese(II) [Mn^{II}(TPP)] (a spin mimic of Cyt. a_3^{3+}) and an $S = 1/2$ imidazolate-bearing CuII complex **[(2)** in Scheme 11 which exactly replicates the e.s.r.-silent and magnetic properties of the resting oxidase active site.

Scheme 1 illustrates the synthesis of the two μ -imidazolato manganese porphyrin complexes prepared in the work. In general, the compounds were synthesized by reacting 1 mol equiv. of $[Mn^{II}(TPP)], 1.2 \text{ mol}$ equiv. of $[M^{II}(imidH)₂-DAP][BF₄]$ with $M = Cu$ or Zn [the pentadentate ligand is derived from the Schiff base condensation of 2,6 diacetylpyridine (DAP) and two histamine molecules, abbreviated here as (imidH)], and 1 mol equiv. of a base in a $CH_2Cl_2/MeCN$ solvent mixture. Owing to the O₂-sensitive nature of Mn" porphyrin compounds, the syntheses and subsequent handling procedures were performed anaerobically. The reaction in Scheme 1 did not occur in the absence of base, and the related Zn and Cu precursor compounds,

J. CHEM. SOC., CHEM. COMMUN., 1985

Figure 1. E.s.r. spectra at 10 K of the manganese tetraphenylporphyrin compounds (10^{-4} m) in CH₂Cl₂ glasses: (a) $[\text{Mn}^{\text{II}}(\text{TPP})],$ **(b)** compound **(l),** (c) compound **(2).**

Scheme 1. Synthesis and proposed structure of the u-imidazolato manganese tetraphenylporphyrin compounds.

 $[M^{II}(imidH)(py)DAP][BF₄]$ ₂ (with one pyridine group replacing one imidazole moiety of the pentadentate ligand), also formed μ -imidazolato compounds in the presence, but not the absence, of base. Furthermore, the use of $[M^H(py)₂$ - DAP][$BF₄$]₂ (with two terminal pyridine groups in the ligand) in the reaction produced no binuclear products. Compounds **(1)** and **(2)** were isolated and purified by removing solvent *in vacuo* and recrystallizing the resulting solids from $CH_2Cl₂/$ heptane. Both compounds possessed satisfactory elemental analyses and solution state conductivities in CH₂Cl₂ (40 $\mu\Omega$ ⁻¹) cm^{-1}) characteristic of uni-univalent electrolyte behaviour as required by their formulation in Scheme **1.** Furthermore, cyclic voltammetry, \dagger electronic spectroscopy, \dagger and e.s.r. *(vide infra)* studies have shown **(1)** and **(2)** to be discrete, solution-stable species in CH_2Cl_2 . This finding contrasts with

our previous results for a related [L(TPP)Fe^{III}(imid)Cu^{II}]+ system which exhibited complex behaviour in solution and could therefore only be studied in the solid state.21 Apparently the greater propensity of [Mn^{II}(TPP)] toward pentaco-ordination aids in the solution stability of **(1)** and **(2);** likewise, a five-co-ordinate Co^{II} compound with a [(TPP)Co^{II}(imid)Ni^{II}] core has also been reported as solution stable in toluene and reactive toward O_2 at the metal centre.¹⁹

Compound (1) exhibits $\mu_{\text{eff}} = 5.84 \,\mu_B$ at room temperature, a value which gradually decreases to 5.09 μ_B at 20 K. This is slightly lower than that expected $(5.9 \mu_B)$ for $S = 5/2$ Mn^{II}, but it is within the range reported for other $S = 5/2$ Mn^{II} compounds.²⁵ Furthermore, the χ_M' *vs.* T^{-1} plot for (1) [and **(2)]** is linear between *ca.* 20 and 300 K, indicating Curie-Weiss behaviour. Compound **(2)** contains an additional unpaired electron from the Cu^{II} centre; thus, the expected μ_{eff} value for (2), in the absence of interaction between $S = 5/2$ Mn^{II} and *S* $= 1/2$ Cu^{II}, is *ca.* 6.3–6.5 μ_B . Somewhat unexpectedly, the experimental magnetic moment for **(2)** at room temperature is 5.11 μ_B , a value which gradually decreases to 4.17 μ_B at 20 K. The depression in the magnetic moment for **(2)** relative to **(l),** through the entire temperature range, could arise from at least four possibilities. The first possibility supposes autoreduction of Cu^H to Cu^I by Mn^{II} to give a $[Mn^{III}(imid)Cu^I]$ ⁺ centre in (2) . The half-wave potential for the Mn^{II}/Mn^{III} couple in $[Mn^{II}(TPP)]$ is -0.27 V (s.c.e./CH₂Cl₂) which is near that of the Cu^I/Cu^{II} couple of $[Cu^{II}(imidH)₂DAP]²⁺$ of -0.32 V $(s.c.e./MeCN)$ $(s.c.e. =$ saturated calomel electrode).† Thus, autoreduction might occur upon formation of a μ -imidazolato compound. If (2) possessed a $[Mn^{III}(imid)Cu^T]$ ⁺ centre, the expected μ_{eff} value should be *ca.* 5.0 μ _B for an *S* = 2 Mn^{III} species, and this is near the value observed. However, the e.s.r. studies below have definitively established the presence of $S = 5/2$ Mn^{II} in (1), and electronic spectroscopy data‡ indicate comparable electronic structures for the Mn centres in (1) and (2) . A second option is the presence of an $S = 3/2$ Mn" centre in **(2)** but not in **(1).** This situation leads to a value

 \dagger For (1), $E_{1/2}(Mn^{II} \rightleftharpoons Mn^{III}) = -0.24 \text{ V}$ (s.c.e./CH₂CI₂) whereas $E_{1/2} = -0.27 \text{ V}$ for [Mn^{II}(TPP)]. For (2), $E_{1/2}(Mn^{II} \rightleftharpoons Mn^{III}) = -0.24 \text{ V}$ $= -0.27$ V for [Mn¹¹(TPP)]. For (2), $E_{1/2}(\text{Mn}^{11} \rightleftharpoons \text{Mn}^{111}) = -0.24$ V
and $E_{1/2}(\text{Cu}^{1} \rightleftharpoons \text{Cu}^{11}) = -0.37$ V (s.c.e./CH₂Cl₂) whereas $E_{1/2} = -0.32$ V for [Cu¹¹(imidH)₂DAP]²⁺ (s.c.e./MeCN).

 \sharp For (1), $\lambda_{\text{max.}}$ ($\varepsilon \times 10^{3}$) in CH₂Cl₂: 616 nm (10.3 dm³ mol⁻¹ cm⁻¹), 583 (9.0), 532 (7.6), 458 (62.0), 403 (38.1), 347 (33.1). For **(2):** 618 nm (10.0 dm3 mo1-I cm-l), 579 **(8.8),** 530 (5.7), 460 *(85.0),* 397 (60.2), 380 (66.4), 348 (62.1). The spectral similarities for **(1)** and **(2)** indicate comparable electronic structures for the Mn centres. For [Mn^{II}-(TPP)]: 602 nm (10.0 dm³ mol⁻¹ cm⁻¹), 562 (11.2), 520 (6.0), 434 (250.1), 359 (55).

of $\mu_{\text{eff}} \sim 5.0 \mu_{\text{B}}$ for (2), assuming no magnetic interaction between Mn^{II} $(S = 3/2)$ and Cu^{II} $(S = 1/2)$ and values of 4.5 μ_B for intermediate-spin Mn^{II} and 2.0 μ _B for Cu^{II}. This possibility cannot be discounted by magnetochemistry alone, but in conjunction with the e.s.r. data below, it appears unlikely since uncoupled $S = 3/2$ Mn^{II} and $S = 1/2$ Cu^{II} in (2) should both exhibit e.s.r. spectra. A third option also invokes an intermediate-spin state $(S = 3/2)$ for the Mn^{II} centre in (2), but assumes a strong *ferromagnetic* interaction $(+J \ge 200 \text{ cm}^{-1})$ between Mn^{II} $(S = 3/2)$ and Cu^{II} $(S = 1/2)$ to give a resultant S = 2 spin state for the binuclear $[{\rm Mn^{II}}(i\text{mid})\text{Cu}^{II}]^+$ centre; this situation would lead also to a value of $\mu_{\text{eff}} \sim 5.0 \mu_{\text{B}}$. However, no other μ -imidazolato compound to date has displayed ferromagnetism, so this possibility is also deemed unlikely. The final option postulates strong antiferromagnetic coupling $(-J \ge 200 \text{ cm}^{-1})$ between Mn^{II} $(\bar{S} = 5/2)$ and Cu^{II} $(S = 1/2)$ to give an $S = 2$ spin-coupled ground state in (2) with $\mu_{\text{eff}} \sim 5.0$ $\mu_{\rm B}$. Like the *ferromagnetic* option, an *antiferromagnetic* option invokes strong magnetic coupling across imidazolate. In this case there is ample evidence, from model compound studies, for *antiferromagnetism* in μ -imidazolato systems, albeit with $-J \le 100$ cm^{-1.24} An interpretation involving antiferromagnetism is entirely consistent with the present e.s.r. data, especially since (1) has been shown by its e.s.r. spectrum to contain $S = 5/2$ Mn^{II} (vide infra).

Compounds (1) and **(2)** have been examined by e.s.r. spectroscopy in solid solution (CH_2Cl_2 glasses) at 10 K. E.s.r. spectra for **(l), (2),** and [MnII(TPP)] are shown in Figure 1. The spectrum of [Mn^{II}(TPP)] is anisotropic ($g_1 = 6.0$ and $g_2 =$ 2.04) with a six-line hyperfine pattern due to $55Mn (I = 5/2)$. Compound **(1)** exhibits a similar e.s.r. spectrum to that of [Mn^{II}(TPP)] with $g_1 = 5.9$ and $g_2 = 2.04$. These g values are typical of $S = 5/2$ systems.^{26,27} This result confirms that the Mn porphyrin centre in (1) contains $S = 5/2$ Mn^{II}.

Compound **(2)** appears to possess unusual magnetochemical properties when compared to (1) . Specifically, its μ_{eff} . value at all temperatures is considerably below that expected for a binuclear compound containing isolated $S = 5/2$ Mn^{II} and $S = 1/2$ Cu^{II} centres. The e.s.r. spectrum of (2) in Figure 1 $S = 1/2$ Cu^{II} centres. The e.s.r. spectrum of (2) in Figure 1 consists of very weak resonances at $g \sim 4$ (Mn) and $g \sim 2$ consists of very weak resonances at $g \sim 4$ (Mn) and $g \sim 2$
(Mn/Cu). The $g \sim 4$ value for Mn is considerably different (Mn/Cu). The $g \sim 4$ value for Mn is considerably different from those of a typical axial $S = 5/2$ Mn^{II} centre. Integration of the $g = 4$ and $g = 2$ signals against e.s.r. signals for known concentrations of $[Mn^{II}(TPP)]$ and $[Cu^{II}(imidH)_2DAP]^{2+}$ in frozen CH_2Cl_2 or MeCN glasses at 10 K indicate that the observed signals in Figure lc account for <1% of Mn and Cu present. Thus, it can be concluded that **(2)** is effectively e.s.r. silent, with the observed weak signals probably being due to small amounts of Mn and Cu impurities. Attempts to obtain a solid-state e.s.r. spectrum of (2) [1% in $(NH_4)_2SO_4$] under the same experimental conditions were also unsuccessful.

Assuming that compounds **(1)** and **(2)** both contain $S = \frac{5}{2}$ Mn^{II} [as conclusively shown in Figure 1 for (1)], the e.s.r.-silent behaviour of **(2)** seems best rationalized in terms of the last possibility, with a fully-coupled $S = 2$ ground state arising via antiferromagnetism. In this context, **(2)** contains a $[Mn^{II}(imid)Cu^{II}]$ core with the same magnetic and e.s.r. signature as the $[cyt.a₃³⁺ (S = 5/2)/Cu_u²⁺ (S = 1/2)]$ active site of resting oxidase. This interpretation echos the conclusions of Dessens et al.,²¹ and Desideri et al.,²⁸ in asserting that imidazolate bridges can, in some circumstances, foster strong antiferromagnetic exchange interactions as large as that possibly operating in oxidase. This conclusion is contrary to most other u-imidazolato model compound results (including some of our own)^{24, §} which have indicated an upper limit of

ca. $-J \sim 100$ cm⁻¹ for imidazolate bridges. Clearly, questions still remain to be answered about magnetic interactions across imidazolate bridges. While answers to these questions may bear on the cytochrome c oxidase problem, they may also be moot in view of recent EXAFS results $9,10,29$ suggesting an [Fe...Cu] separation of only 3.0-3.8 **A,** whereas imid-, requires at least *5* A.

We thank The Robert **A.** Welch Foundation and the **U.S.** National Institutes of Health for support of this work.

Received, 2nd *July 1985; Corn. 939*

References

- **1** See, for example: A. L. Lehninger, 'The Mitochondrion,' Benjamin, New York, **1973.**
- **2** M. F. Tweedle, L. J. Wilson, L. Garcia-Iniquez, G. T. Babcock, and G. Palmer, J. *Biol. Chem.,* **1978,253, 8065.**
- **3** T. **H.** Moss, E. Shapiro, T. E. King, H. Beinert, and C. R. Hartzell, J. *Biol. Chem.,* **1978, 253, 8072.**
- **4** T. Kent, **E.** Munck, W. R. Dunham, W. F. Filter, K. L. Findling, T. Yoshida, and J. A. Fee, *J. Biol. Chem.,* **1982, 257, 12489.**
- **5** V. Chunplang, Ph.D. Dissertation, William Marsh Rice University, Houston, Texas, U.S.A., **1985.**
- **6** G. Palmer, G. T. Babcock, and L. E. Vickery, *Proc. Nutl. Acad. Sci. USA,* **1976,73,2206.**
- **7** C. A. Reed and J. T. Landrum, *FEBS Lett.,* **1979, 106, 265.**
- 8 R. W. Shaw, J. E. Rif, M. H. O'Leary, and H. Beinert, *J. Biol. Chem.,* **1980, 256, 1105.**
- **9** B. Chance and L. Powers, *Biophys.* J., **1981,34,95a.**
- **10** L. Powers, B. Chance, Y. Ching, and P. Angiolillo, *Biophys.* J., **1981, 34, 465.**
- **11** T. Prosperi and A. A. G. Tomlinson, J. *Chem. SOC., Chem. Commun.,* **1979, 196.**
- **12** D. Kovacs and R. E. Shephard, J. *Znorg. Biochem.,* **1979,10,67.**
- **13** J. T. Landrum, C. A. Reed, K. Hatano, and W. R. Scheidt, J. *Am. Chem. SOC.,* **1978,100,3232.**
- **14** M. J. Gunter, L. N. Mander, G. M. McLaughlin, K. **S.** Murray, K. J. Berry, P. E. Clark, and D. A. Buckingham, J. *Am. Chem. SOC.,* **1980,102,1470;** M. J. Gunter, L. N. Mander, K. **S.** Murray, and P. E. Clark, *ibid.,* **1981,1083,6784;** M. J. Gunter, K. J. Berry, K. **S.** Murray, *ibid.,* **1984, 106, 4227.**
- **15** C. K. Chang, M. **S.** Moo, and B. Ward, J. *Chem. SOC., Chem. Commun.,* **1982, 716.**
- **16** M. Okawa, W. Kanda, and **S.** Kida, *Chem. Lett.,* **1980, 1281.**
- **17** J. Jaud, Y. Journaux, J. Galy, and 0. Khan, *Nouv.* J. *Chim.,* 1980, **4, 629.**
- **18** M. C. Elliott and K. Akabori, J. *Am. Chem. SOC.,* **1982,104,2671;** C. K. Schauer, **K.** Akabori, C. M. Elliott, and 0. P. Anderson, *ibid.,* **1984, 106, 1127.**
- 19 G. Brewer and E. Sinn, *Inorg. Chim. Acta*, 1984, 87, L41.
- **20** B. Lucas, J. R. Miller, J. Silver, and M. T. Wilson, J. *Chem. SOC., Dalton Trans.,* **1982, 1035.**
- **21 S.** E. Dessens, C. L. Merrill, R. J. Saxton, R. L. Ilaria, Jr., J. W. Lindsey, and L. J. Wilson, J. *Am. Chem. SOC.,* **1982, 104,4357.**
- **22** R. **J.** Saxton, L. W. Olsen, and L. J. Wilson, J. *Chem. SOC., Chem. Commun.,* **1982,984.**
- **23** L. J. Wilson, V. Chunplang, B. K. Lemke, C. L. Merrill, R. J. Saxton, and M. L. Watson, *Inorg. Chem. Acta Bioinorg.*, 1983, **79, 107.**
- **24** R. J. Saxton and L. J. Wilson, J. *Chem. SOC., Chem. Commun.,* **1984, 359** and references therein.
- **25** M. Sato, H. Kon, **A.** Tasaki, C. Kabuto, and J. Silverton, J. *Chem. Phys.,* **1976, 16, 405.**
- **26** J. C. Weschler, B. M. Hoffman, and F. Basolo, J. *Am. Chem. SOC.,* **1975,97, 5278.**
- **27** T. Yonetani, H. Yamamoto, J. E. Erman, J. **S.** Leigh, Jr., and G. **H.** Reed, J. *Biol. Chem.,* **1972, 247, 2447.**
- **28 A.** Desideri, M. Cerdonio, F. Mogno, **S.** Vitale, L. Calabrese, D. Cocco, and G. Rotilio, *FEBS Lett.,* **1978, 89, 83.**
- **29** Private communication, Professor Robert Scott, Department of Chemistry, University of Illinois, Urbana, Illinois, **61801,** U.S.A., **1985.**

[§] For the Co^{II} porphyrin analogue of (2) , $-J \sim 0$ cm⁻¹ (ref. 5).