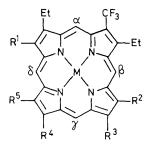
Paramagnetic ¹⁹F N.M.R. Spectra of Iron(III) Porphyrins Substituted with CF₃ Groups and Reconstituted Myoglobin

Hiroo Toi, Michihide Homma, Akihiro Suzuki, and Hisanobu Ogoshi*


Department of Material Science, Technological University of Nagaoka, 1603-1 Kamitomioka, Nagaoka, Ni-igata, 949-54 Japan

Paramagnetic ¹⁹F n.m.r. spectra of iron(\mathbb{H}) porphyrins substituted with CF₃ groups and metmyoglobin reconstituted with the iron(\mathbb{H}) complex of 3-trifluoromethylmesoporphyrin-IX were measured and the ¹⁹F shifts compared with the respective chemical shifts of the free ligands and zinc(\mathbb{H}) complexes.

Enzymes and substrates chemically modified with fluorine or perfluoroalkyl groups are useful probes for clarifying the structure of enzymes and the interaction between substrates and enzymes by use of ¹⁹F n.m.r. spectroscopy. In particular, ¹⁹F n.m.r. investigations of paramagnetic metalloenzymes and related metal complexes have given a new insight into their structure elucidation and reactivity. We have prepared the highly symmetrical porphyrin 1,3,5,7-tetrakis(trifluoromethyl)-2,4,6,8-tetraethylporphyrin $(1)^1$ and the dimethyl ester of 3-trifluoromethylmesoporphyrin-IX (5)² replaceable with naturally occurring heme in hemeproteins and compared the paramagnetic ¹⁹F n.m.r. spectra of the iron(III) complexes with those of the corresponding free base and zinc complexes. In addition, the ¹⁹F n.m.r. spectrum of the metmyoglobin cyanide reconstituted with the iron complex of the dicarboxylic acid of (5) was obtained in D_2O-H_2O .

Table 1 summarizes the ¹⁹F n.m.r. signals due to the CF₃ groups of the free bases and their metal complexes. The ¹⁹F resonances of the low-spin iron(III) complex (3) (S = 1/2) and

the high-spin iron(III) complex (4) (S = 5/2) showed 5 and 60 p.p.m. downfield shifts respectively, compared with the spectrum of the zinc(II) complex (2). Diagnostic ¹H n.m.r. spectra of the iron(III) complex of the parent etioporphyrin showed the CH₃ signals at δ 13 and 48 for the low- and high-spin states, respectively.³ The large differences in the fluorine chemical shifts between the low- and high-spin states are comparable with the differences in the CH₃ chemical

Table 1. ¹⁹ F n.m.r. chemical shifts for the CF ₃ group in compounds (1) —(9).							
Compound	R1	R ²	R ³	R ⁴	R ⁵	М	Chemical shift ^a
(1)	CF ₃	CF ₃	Et	CF_3	Et	H_2	-49.5
(2)	CF_3	CF_3	Et	CF ₃ CF ₃	Et	Zn	-49.1
(3)	CF_3	CF_3	Et	CF ₃	Et	$Fe(Im)_2^{+d}$	-43.5
(4)	CF_3	CF_3	Et	CF ₃	Et	FeCl	10.8
(5)	Me	Me	PMe b	PMe	Me	H_2	-48.7
(6)	Me	Me	PMe	Рме	Me	Zn	-48.1
(7)	Me	Me	Рме	PMe	Me	$Fe(Im)_{2}^{+}$	-49.7
(8)	Me	Me	Рме	Рме	Me	FeCl	12.8
(9)	Me	Me	Pc	Р	Me	$Fe(CN)_2^-$	-50.4e

^a In p.p.m. from CFCl₃ in CDCl₃. ^b P^{Me} = CH₂CH₂CO₂Me. ^e P = CH₂CH₂CO₂H. ^d Im = imidazol-2-yl. ^e In D₂O.

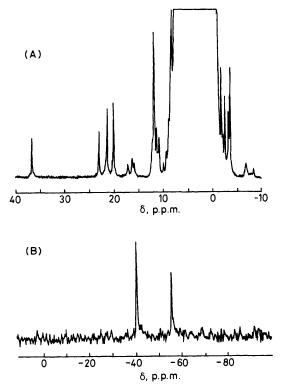


Figure 1. ¹H and ¹⁹F n.m.r. spectra of the reconstituted myoglobin cyanide in D_2O . (A) ¹H, DSS (sodium 4,4-dimethyl-4-silapentanesulphonate) reference. (B) ¹⁹F, CFCl₃ reference.

shifts. Paramagnetic proton chemical shifts for iron(III) porphyrins have been described by two terms: the Fermi contact and dipole-dipole interactions.⁴ The present ¹⁹F results may be analysed in a similar way to that for proton isotropic shifts. In contrast with the high-spin complex, fluorine chemical shifts of the low-spin complexes (7) and (9) showed small isotropic shifts relative to that of the zinc(II) complex (6), whereas the CH_3 proton resonances showed a 10—15 p.p.m. downfield shift. In the cases of the low-spin complexes (7) and (9), solvent and axial ligand effects and intermolecular interactions must be taken into account; these may have opposite signs which would explain the very small

change in isotropic shift. The fluorine contact shifts for transition metal complexes with fluorine-containing ligands have been estimated to be 2–3 times larger than the proton contact interaction and have the opposite sign if the π -electron spin distribution is constant.⁵ The magnitude and sign of fluorine chemical shifts are probably determined by a balance of contact and dipole interactions. It is questionable to consider that a different spin-transfer mechanism is necessary to explain the fluorine chemical shifts of the low-spin iron(III) porphyrins.

The dicarboxylic acid of (8) was reconstituted with sperm whale apomyoglobin. Figure 1 illustrates the ¹H and ¹⁹F n.m.r. spectra of the metmyoglobin cyanide for the low-spin state. The naturally occurring prosthetic heme and its derivatives can be accommodated in two different ways, normal and reverse, at the initial stage upon reconstitution.⁶ The reverse, orientation is obtained by 180° rotation around the meso α - γ axis. Both spectra in Figure 1 show the co-existence of normal and reverse orientated hemes in the protein. Two ¹⁹F signals at -40.4 and -55.5 p.p.m. for reconstituted myoglobin seem to be indicative of two orientations. Interaction between the amino acid residues and heme may have an effect on the chemical shifts of the CF₃ group. The present ¹⁹F n.m.r. studies of paramagnetic iron porphyrins and metmyoglobin provide a diagnostic means for identifying the spin states of the prosthetic group.

Received, 29th May 1985; Com. 744

References

- 1 M. Homma, K. Aoyagi, Y. Aoyama, and H. Ogoshi, *Tetrahedron Lett.*, 1983, 24, 4343.
- 2 Manuscript in preparation.
- 3 H. M. Goff, in 'Iron Porphyrins,' eds. A. B. P. Lever and H. B. Gray, Addison Wesley, Reading, Massachusetts, 1983, Part I, pp. 240ff., and references therein.
- 4 G. N. La Mar and F. A. Walker, in 'The Porphrins,' ed. D. Dolphin, Academic Press, New York, 1979, vol. IV, pp. 61–157.
- P. F. Richardson and R. W. Kreilick, *Inorg. Chem.*, 1981, 20, 1978;
 S. Icli and R. W. Kreilick, *J. Phys. Chem.*, 1971, 75, 3462.
- 6 G. N. La Mar, D. L. Budd, D. B. Viscio, K. M. Smith, and K. C. Langry, Proc. Natl. Acad. Sci. USA, 1978, 75, 5755; G. N. La Mar, H. Toi, and R. Krishnumoorthi, J. Am. Chem. Soc., 1984, 106, 6395.