Synthesis and Catalytic Properties of W(OAr)₂Cl₂(CHCMe₃)(OR₂) and $W(OAr)_{2}Cl(CHCMe_{3})$ (CH₂CMe₃)(OR₂) (Ar = 2,6-disubstituted phenyl; R = Et or Pri), **New Uni-component Catalysts for Metathesis of Acyclic and Cyclic Olefins, with or without functional Groups**

Francoise Quignard, Michel Leconte, and Jean-Marie Basset

lnstitut de Recherches sur la Catalyse, Laboratoire Propre du CNRS, conventionne **a** *I'Universite Claude Bernard, L yon, 2, avenue Albert Einstein, 69626 Villeurbanne Cedex, France*

The synthesis of W(OAr)₂CI(CHR)(CH₂R¹)(OR²₂) (Ar = 2,6-disubstituted phenyl; $R^2 = E$ t or Prⁱ) illustrates one of the first examples of a well defined, Lewis acid-free, homogeneous olefin metathesis catalyst, for which the activity and stereoselectivity can be governed **by** the nature of the aryloxide ligands and of the co-ordinated ether and which shows a wide range of potential applications.

Aryloxide complexes of tungsten(vi), such as $W(OAr)_{2}Cl_{4}$ $(OAr = OC_6H_3Me_2-2, 6$, $OC_6H_2Me_3-2, 4, 6$, $OC_6H_3Ph_2-2, 6$, $OC_6H_3Br_2-2, 6, OC_6H_3Cl_2-2, 6, or OC_6H_3F_2-2, 6$, are active in olefin metathesis when associated with alkyl-aluminium, alkyl-tin, or alkyl-lead complexes.1 With the last two cocatalysts, the catalytic systems are highly efficient for metathesis of unsaturated esters.2 A detailed study of the interaction between the precursor complex and SnR_4 (R = Me or Bu) or PbBu4 suggested a co-ordination sphere of the type $W(OAr)_{2}Cl_{2}(\widetilde{CHR}')$, similar to the co-ordination sphere derived from tungsten(v1) and alkylating agents. $3-7$ It was therefore logical to try to synthesise such chloro-aryloxidecarbene complexes of tungsten for which the substituted aryloxide ligand would behave as a two-electron-ligand with versatile electronic and steric properties.8

We report here the synthesis and catalytic properties of two families of chloro-aryloxide complexes of tungsten(v1): $W(OAr)_{2}Cl_{2}(CHCMe_{3})(OR_{2})$ (A) and $W(OAr)_{2}Cl(CHC Me_3$)(CH_2 CH_2 OR_2) **(B)**. The complexes of type **(B)** proved to be active without any co-catalyst for metathesis of various kinds of olefin: acyclic and cyclic, terminal and internal, linear and branched with or without functional groups (esters and nitriles). Also, depending on the nature of the aryloxide ligand, or of the co-ordinated ether $(OR₂)$, they exhibit for a given olefin various degrees of activity and/or stereoselectivity.

Table 1. Activities and stereoselectivities of the chloro-aryloxidecarbene tungsten complexes **(A)** and **(B)** in the metathesis of cis-pent-2-ene .a

	% Yield of	<i>trans/cis</i> at 0% conversion ^c			
Catalyst	but-2-eneb	C4	C_6		
(A1)	0				
(A2)	5	0.67(2)			
(A3)	8	0.62(2)			
(B1)	12	0.20(1)	0.35(2)		
(B2)	3	0.18(1)	0.40(2)		
(B3)	17.5	0.80(2)	1.40(2)		
(B4)	20	0.90(2)	1.50(2)		
	25	0.30(10)	0.50(5)		
(B5)	15 ^d	$0.06(1)$ ^d	0.11(2) ^d		
	5e	$0.06(1)^e$	$0.10(2)$ e		
(B6)	6.5	0.80(2)	1.10(2)		
(B7)	3	0.80(2)	1.10(2)		

^a Conditions: PhCl solvent, temp. 85 °C; molar ratio pentene/catalyst 100; reaction times **14** h for **(Al)** and **(A2),** 1 h for **(A3),** *5* min for **(B1)–(B7). b** Equilibrium value = 25% . **c** Standard deviations of the least significant figure in parentheses. d At 25 *"C. e* At 0 "C.

Reaction of $W({\rm OC}_6H_3Ph_2-2,6)_2Cl_4$ (0.22 mmol) in diethyl ether (20 ml) at 25° C with Mg(neopentyl)₂(dioxane) (1 equiv.) gave a red-brown solution from which $MgCl₂(dioxane)$ precipitated in a few minutes, with evolution of *ca.* 0.9 mol of neopentanelmol of **W.** After 1 h, the red solution was decanted, filtered, and evaporated to dryness. The resulting red-brown essentially pure product *(85%* yield based on W), is extremely soluble in most organic solvents, and has the formula $W(OC_6H_3Ph_2-2,6)_2Cl_2(CHCMe_3)(OEt_2)$ (A1);[†] ¹H n.m.r. (CDCl₃, 25 °C): δ 8.68 (s, 1H, J_{W-H} 10 Hz, CHCMe₃), 7.23 (m, 26H, $OC_6H_3Ph_2$), 3.42 (m, 4H, OCH_2Me), 1.12 (t, 6H, OCH2Me), and 0.85 **(s,** 9H, CHCMe3). A similar reaction with $W({\rm OC}_6H_3X_2-2,6)_2Cl_4$ (X = Cl or Br) gave the related products $W(OC_6H_3X_2, 2, 6)_{2}Cl_2(CHCMe_3)(OEt_2)$ **(A2)** $(X =$ Cl) and $(A3)$ $(X = Br)$ as oils.

 $W(OC₆H₃R¹₂ - 2,6)₂Cl(X)(CHCMe₃)(OR²₂)$

$X = CI, R^2 = Et:$	$(A1) R1 = Ph$ $(A2) R1 = Cl$ $(A3) R1 = Br$
$X = CH_2$ CMe_3 , $R^2 = Et$:	$(B1) R1 = Ph$ (B2) $R^1 = Me$ $(B3) R1 = Cl$ $(B4) R1 = F$
$X = CH_2CMe_3$, $R^2 = Pr^i$;	$(B5) R1 = Ph$ $(B6)$ $R1 = Cl$ $(B7) R1 = F$

The reaction of Mg(neopentyl)₂(dioxane) (1.5 equiv.) in diethyl ether at room temperature with $W(OC_6H_3Ph_2-$ 2,6)2C14 led in the gas phase to *ca.* 1 mol of neopentane/mole of W and a yellow-brown solution from which $MgCl₂(dioxane)$ precipitated. After decantation and filtration, the solution was evaporated to dryness. The resulting golden-brown essentially pure compound (75% yield based on W), $W(OC₆H₃Ph₂$ - $2,6$ ₂Cl(CHCMe₃)(CH₂CMe₃)(OEt₂) **(B1**),[†] is highly soluble in most organic solvents, ¹H n.m.r. (CD₂Cl₂, 25^{\degree}C): δ 9.96 $(k, 1H, CHCMe₃), 7.48$ (m, 26H, $OC₆H₃Ph₂), 3.42$ (m, 4H, OCH₂Me), 1.26 (s, 2H, CH₂CMe₃), 1.12 (t, 6H, OCH₂Me), 0.86 (s, 9H, CHCMe₃), and 0.56 (s, 9H, CH₂CMe₃). Exchange with di-isopropyl ether at room temperature gave the analogue **(B5)**, ¹H n.m.r. (CD₂Cl₂, 25 °C): δ 9.96 **(s, 1H**, CHCMe₃), 7.48 (m, 26H, OC₆H₃Ph₂), 3.62 (m, 2H, OCHMe2), 1.26 **(s,** 2H, CH2CMe3), 1.11-1.036 (d, 12H, OCHMe2), 0.86 **(s,** 9H, CHCMe3), and 0.56 **(s,** 9H, CH2CMe3). Compounds **(Bl)-(B7)** (Table 1) were synthesized by the same procedure, containing either $OEt₂$ or $OPr₁$

I' Satisfactory elemental analyses were obtained.

Table 2. Activities of **chloro-aryloxide-carbene** complexes **(B)** of tungsten in metathesis of various olefinic substrates.

Catalyst	Substrate	Molar ratio substrate/catalyst	Temp./°C	Reaction time	Product analysed	$\%$ Yield
(B5)	Norbornene	500	25	10 _s	Polynorbornene	100
(B5)	Norborn-5-ene-2-yl acetate	100	25	10 _s	Polynorbornene acetate	100
(B5)	Norborn-5-ene-2- carbonitrile	100	25	10 _s	Polynorbornene nitrile	100
(B1)	Dec-1-ene	100	85	1 _h	Octadec-9-ene	45
(B1)	2-Methylbut-2-ene/ hex-3-ene $(1/3)$	200	85	1 _h	Pent-2-ene	35
(B1)	Ethyl oleate	100	85	1 h	Diester	32
(B5)	Ethyl oleate/dec-5-ene (1/2)	150	85	$30 \,\mathrm{min}$	Ethyl-tetradec- 9-enoate	70
		300	85	$30 \,\mathrm{min}$, ,	52

Figure 1. *trans/cis-But-2-ene ratio vs.* but-2-ene yield in metathesis of cis-pent-2-ene with $(B1)$ (\bullet) and $(B3)$ (\circ) catalysts.

as co-ordinated ether. The total replacement of diethyl ether by di-isopropyl ether could be carried out at $25 \degree C$, which indicates that the co-ordinated ether is very labile in this kind of complex. The 2,6-diphenyl-phenoxide derivatives are solids, whereas the other aryloxide ligands give rise to oily compounds.

Reaction of **(Al)** or **(Bl)** with an excess of acetone in diethyl ether at room temperature gave the 2,4,4-trimethylpent-2-ene in 66 or 70% yield respectively, in agreement with the known reactivity of carbenes with ketones.9

Complexes **(A1)—(A3)** proved to be very poor catalysts in metathesis of cis-pent-2-ene, as are related complexes W(0 neopentyl)₂X₂(CHCMe₃) which show no metathesis activity in the absence of Lewis acid co-catalyst.10

Interestingly, complexes **(Bl)-(B7)** are fairly active in cis-pent-2-ene metathesis, even without any co-catalyst (Table 1). The activity and stereoselectivity depend markedly on the 2,6-substituents R of the phenoxide ligands; the activity also depends on the co-ordinated ether. For complexes **(B1)- (B4)**, the activity increases in the order: $R = Me \ll Ph < Cl < F$. The stereoselectivity increases in the order: $F \le Cl < Ph \sim$ Me. The fact that both activity and stereoselectivity $[(B1)$ — **(B4)]** change with the nature of the aryloxide ligand supports the hypothesis that this ligand remains co-ordinated in the catalytic cycle. The fact that the activity changes with the bulk of the ether whereas the stereoselectivity remains unchanged

(for a given aryloxide ligand) **[(Bl)-(B7)]** suggests (i) that the ether is deco-ordinated during the catalytic cycle and (ii) that this deco-ordination is governed, inter alia, by steric factors (repulsion between the bulky aryloxide and the bulky ether). The results of Table 1 indicate that the major factor which governs the stereoselectivity is the electronic effect of the aryloxide ligands [**(Bl)-(B4)].** Further, with complexes **(Bl)** or **(B5),** extremely high stereoselectivites can be achieved even for very high conversion which make these catalysts useful in organic synthesis (Figure 1).

Table 2 illustrates the various synthetic possibilities for catalysts **(Bl)** and **(B5).** As expected, it appears that the absence of a Lewis acid in metathesis allows a variety of uses. The weak Lewis acidity of the catalyst avoids many side reactions which were observed with conventional systems: double bond migration, cationic oligomerisation, solvent alkylation, acid-base complexation between heteroatoms and Lewis acid co-catalysts. Additionally, the turnover numbers reached with unsaturated esters are higher than classical values.^{11,12} This may be due to a 'protecting' effect of the bulky aryloxide ligands which may prevent dimerisation of carbene *,6* or co-ordination of the functional groups which could poison the catalysts by Wittig type reactions.

We thank the Société Nationale Elf-Aquitaine for support.

Received, 22nd *July 1985; Corn. 1068*

References

- 1 F. Quignard, M. Leconte, and J. M. Basset, *J. Mol.* Catul., 1985, **28,** 27; *ibid.,* submitted for publication.
- **2** Fr. Pat 8309876 (1983) and 8409001 (1984), to J. M. Basset, M. Leconte, J. Ollivier, and F. Quignard (Société Nationale Elf-Aquitaine).
- 3 For reviews see: J. J. Rooney and A. Stewart, in 'Catalysis,' vol. 1, (Specialist Periodical Report), The Chemical Society, 1977, p. 277; **K. J.** Ivin, 'Olefin Metathesis,' Academic Press, London, 1983.
- 4 **J.** P. Soufflet, D. Comrnereuc, and **Y.** Chauvin, Compt. Rend. *Acad.* Sci., Ser. C, 1973, **276,** 169.
- *5* E. L. Muetterties, *Znorg.* Chem., 1975, **14,** 951.
- 6 R. H. Grubbs and C. R. Hoppin, *J.* Chem. *SOC.,* Chem. Commun., 1977, 634.
- 7 B. A. Dolgoplosk, **I.** A. Oreshkin, K. L. Makovetsky, E. I. Tinyakova, I. Ya. Ostrovskaya, **1.** L. Kershenbaum, and G. M. Chernenko, *J.* Organornet. Chern., 1977, **128,** 339.
- 8 H. T. Dodd and **K.** J. Rutt, *J. Mol. Catul.,* 1982, **15,** 103.
- 9 R. R. Schrock, *J. Am.* Chern. *SOC.,* 1976,98,5399.
- 10 J. Kress, M. Wesolek, and J. A. Osborn, *J.* Chem. *SOC.,* Chem. Commun., 1982, 514.
- 11 J. Otton, Y. Colleuille, and J. Varagnat, *1. Mol.* Catal., 1980, **8,** 313.
- 12 J. C. Mol, Chem. Tech., 1983, 250, and references therein.