Thermal and Photochemical Catalytic Dehydrogenation of Alkanes with $[\mathsf{IrH}_2(\mathsf{CF}_3\mathsf{CO}_2)(\mathsf{PR}_3)_2]$ ($\mathsf{R} = \mathsf{C}_6\mathsf{H}_4\mathsf{F}\cdot\mathsf{p}$ and Cyclohexyl)

Mark J. Burk, Robert H. Crabtree, and Dominic V. McGrath

Yale Chemistry Department, 225 Prospect Street, New Haven, Connecticut, U.S.A.

 $[IrH₂(CF₃CO₂)(Pcy₃)$ (cy = cyclohexyl) catalyses the photochemical dehydrogenation of cyclo-octane both in the presence and absence of a hydrogen-acceptor.

Several catalysts for thermal alkane dehydrogenation have been described recently.^{1,2} In each case it has been found necessary to have a hydrogen-acceptor such as the alkene t-butylethylene, which we originally introduced3 for this purpose. We now report on some new catalysts $[IrH₂(CF₃ CO_2$)(PR₃)₂], (1; R = C₆H₄F-*p*) and (2; R = cyclohexyl). While both give thermal[†] alkane dehydrogenation, (2) also gives a novel photochemical catalytic dehydrogenation at ambient temperature, even in the absence of t-butylethylene.

Complex (1) is made from the corresponding $[IrH_2(Me_2 CO_2L_2$]SbF₆3 [L = P(C₆H₄F-p)₃] with Na(CF₃CO₂) in tetrahydrofuran (thf) and resembles the known analogous chelating carboxylate complexes⁴ $\{(1):$ ¹H n.m.r. $(CD_2Cl_2):$ **6** -30.4 [t, 2J(P,H) 16.5 **Hz,** Ir-HI, 6.74, and 7.38 (complex, PAr); i.r.: v 2254 (Ir-H), 1390, and 1612 cm⁻¹ (RCO₂)}. In cyclo-octane (1.5 ml) containing t-butylethylene *(50* equiv.) at 150 "C, complex **(1)** (10 mg) gave 16 turnovers of cyclooctene, as determined by g.c. and g.c.-mass spectroscopy. After 2 days no further cyclo-octene formation was observed and 1 equiv. C_6H_5F was also detected; this arises by P–C cleavage^{\bar{z} , \bar{z} of the phosphine and may well be responsible for} the deactivation of the catalyst.

Complex (2), made by treatment of $[Ir(cod)(CF₃CO₂)]₂$ and $Pcy₃$ (2 equiv.) (cod = cyclo-octa-1,5-diene; cy = cyclohexyl) in CH_2Cl_2 with H_2 , has an analogous structure $\{(2):$ ¹H n.m.r.: δ -33.3 [t, 2*J*(P,H) 16 Hz, Ir–H], 1.2–2.3 (complex, Pcy); i.r. v 2280 (Ir-H), 1440, and 1619 cm⁻¹ (RCO₂)}. Under the thermal conditions described above, only 2 turnovers of cyclo-octene were observed. Photochemically and at room temperature, **(2)** was much more active. Under the same conditions, but at 25 °C and with u.v. illumination at 254 nm (Rayonet reactor), **(2)** gives 28 turnovers **of** cyclo-octene in **7** days. No P-C cleavage products were detected and ca. 30% of the colourless alkane-soluble catalyst was recovered from the very pale yellow products.

Other alkanes were also dehydrogenated under the photochemical conditions, *e.g.,* cyclohexane gave cyclohexene (2.0 turnovers); methylcyclohexane gave methylenecyclohexane (2.75) , 1-methyl- (2.19) , 3-methyl- (0.85) , and 4-methylcyclohexene (1.26); hexane gave hex-1-ene (1.18), trans-hex-2-ene (2.48) , *cis-hex-2-ene* (0.47) , and *trans-hex-3-ene*, (0.52) by capillary g.c. (Carbowax column) and g.c.-mass spectroscopy.

In all the experiments described above the hydrogen removed from the alkane was transferred to t-butylethylene to give t-butylethane. We now find that even in the absence of t-butylethylene, dehydrogenation does take place under the photochemical, but not the thermal conditions: 7 turnovers of cyclo-octene are observed with **(2)** after 7 days. It appears that the photochemical energy provides the thermodynamic driving force necessary for dehydrogenation to take place [equation (1)]. \ddagger

 \ddagger The H₂ expected on the basis of equation (1) has also been detected; technical difficulties have prevented us from determining the quantum yields.

t H. Felkin *et al.* simultaneously and independently observed thermal alkane dehydrogenation from $IrH_5(PR_3)_2(R = Ph)$ in the presence of MeCO₂H; they considered $\text{[IrH}_2(\text{MeCO}_2)(PR_3)_2\text{]}$ was involved. (H. Felkin, personal communication, **1984).**

We are currently studying the mechanism, which is probably similar to that previously proposed for this type of alkane dehydrogenation. 1-3

Received, 15th August 1985; Corn. 1223

References

1 **D. Baudry, M. Ephritikine,** H. **Felkin, and R. Holmes-Smith,** *J. Chem. Soc., Chem. Commun.,* **1983, 788;** H. **Felkin,** T. **Fillebeen-** **Khan, Y. Gault, R. Holmes-Smith, and** J. **Zakrzewski,** *Tetrahedron Lett.,* **1984,** *25,* **1279.**

- **2 M.** J. **Burk, R. H. Crabtree, C.** P. **Parnell, and** R. J. **Uriarte,** *Organometallics,* **1984, 3,** 816.
- **3 R. H. Crabtree, M. F. Mellea,** J. **M. Mihelcic, and** J. **M. Quirk,** *J. Am. Chem.* **SOC., 1982,104,107; P. Garrou,** *Chem. Rev.,* **1985,85, 171.**
- **4 A. Araneo, S. Martinengo, and P. Pasquale,** *Rend. Ist. Lomb. Accad. Sci. Lett. A,* **1975, 99, 797.**