Oxidation of Unactivated Methyl Groups via a Cyclopalladation Reaction

Jack E. Baldwin,* Carmen Nájera,t and Miguel Yus \dagger

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.
The successive cyclopalladation-oxidation of E-pinacolone, E-2,2-dimethylcyclohexanone, 2,2,6,6-tetramethylcyclohexanone, and E-lupanone oxime led to the corresponding β-acetoxy derivatives; the second palladation in the case of the acetoxy compounds (2) and (8) takes place in one of the remaining methyl groups, being a regiospecific process, and in the case of the cyclic oximes the palladation occurs in the equatorial methyl group.

The cyclopalladation of E-pinacolone oxime leading to the dimeric organopalladium compound (1) has been described. ${ }^{1}$

(3)

Scheme 1. Reagents: i, pyridine; ii, $\mathrm{Pb}(\mathrm{OAc})_{4}$; iii, NaBH_{4}; iv, 2 equiv. $\mathrm{Pb}(\mathrm{OAc})_{4}$.

Scheme 2. Reagents: i, $\mathrm{Na}_{2} \mathrm{PdCl}_{4}-\mathrm{NaOAc}$; ii, pyridine; iii, $\mathrm{Pb}(\mathrm{OAc})_{4}$; iv, NaBH_{4}.

Scheme 3. Reagents: i, $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$; ii, pyridine; iii, $\mathrm{Pb}(\mathrm{OAc})_{4}$; iv, $\mathrm{NaBH}_{4} ; \mathrm{v}, \mathrm{PPh}_{3}$.
\dagger Permanent address: Departamento de Química Orgánica, Facultad de Química, Oviedo, Spain.

Very recently, the application of this reaction to the cyclopalladation of lanost-8-en-3-one oxime and its further deuteriation or iodination has been published. ${ }^{2}$ These results prompt us to report our independent findings in this field.
The oxidation of the pyridine complex derived from the compound (1) with lead tetra-acetate (1 equiv.) in acetic acid at room temperature led after reduction with sodium borohydride \ddagger to the acetoxy oxime (2) (ca. 100% yield). § In the absence of pyridine the reaction did not work. If the same process was carried out with double the stoicheiometric amount of lead tetra-acetate the corresponding compound (3) was isolated (64% yield) § (Scheme 1).
A second palladation-oxidation of compound (2) was done in order to study the regiochemistry of this process. Thus, when compound (2) was palladated the organopalladium dimer (4) was isolated (83% yield), \S and subsequent oxidation of this compound led to the diacetoxy oxime (5) (86% yield)§ (Scheme 2).
The palladation of E-2,2-dimethylcyclohexanone oxime (6) yielded the corresponding dimer (7) (85% yield) § which was oxidized through its pyridine complex to give the compound (8) $(96 \%$ yield). § When this compound was again palladated the metallation took place on the remaining methyl group ${ }^{3}$ affording the organopalladium compound (9) after treatment with triphenylphosphine (82% yield) \S (Scheme 3).

[^0]
(10)

The palladation of 2,2-dimethylcyclopentanone oxime fails owing to the difficulty in achieving planarity of the oxime and methyl groups necessary for palladation within the constraints applied by the five-membered ring. ${ }^{3}$

We have also studied the palladation-oxidation in a hindered ketone. Thus, when 2,2,6,6-tetramethylcyclohexanone oxime (10) was palladated the expected organopalladium dimer (11) was obtained (86% yield).§ In this case the oxime group must be acetylated in order to avoid its isomerization during the oxidation; the acetylation and further oxidation of compound (11) led to the product (12) (76% yield)§ (Scheme 4).

Finally, we have palladated lupanone oxime (13), isolating the expected dimer (14) (76% yield), \S which after acetylation and oxidation led to the expected 23 -acetoxy derivative (15) (90% yield)§ (Scheme 4). The stereochemistry of (14), and hence the acetoxy derivative (15), was established by nuclear Overhauser effect (n.O.e.) studies at 500 MHz .

We thank Dr T. G. Halsall for a gift of lupenyl acetate, and Dr A. Derome for the n.O.e. studies.

Received, 12th October 1984; Com. 1443

References

1 A. G. Constable, W. S. MacDonald, L. C. Sawkins, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1978, 1061; J. Chem. Soc., Dalton Trans., 1980, 1992.
2 K. Carr and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1984, 1227.
3 F. Johnson, Chem. Rev., 1968, 68, 375.

[^0]: \ddagger When the reaction product bears the oxime group the reduction of $\mathrm{Pd}^{\text {II }}$ to Pd^{0} was carried out to avoid the trapping of the $\mathrm{Pd}^{\text {II }}$ by the oxime.
 § All new compounds have yielded satisfactory analytical and/or spectral data. Selected data: (2), m.p. $85-86^{\circ} \mathrm{C} ;$ v $1730 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 4.07\left(\mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 70.01\left(\mathrm{CH}_{2} \mathrm{O}\right)$ and $170.98(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z} 174\left(\mathrm{M}^{+}\right.$ +1). (3), b.p. $100^{\circ} \mathrm{C}\left(0.1 \mathrm{mmHg}\right.$, Kugelrohr); $v 1750$ and $1710 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.16(\mathrm{MeCO})$ and $4.10\left(\mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 69.82\left(\mathrm{CH}_{2} \mathrm{O}\right), 170.66$ $\left(\mathrm{CO}_{2}\right)$, and $210.89(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z} 159\left(M^{+}+1\right)$. (4), m.p. $135-138^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ $2.34,2.63\left(2 \mathrm{~d}, J 8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pd}\right), 3.96$, and $4.01(2 \mathrm{~d}, J 11.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{C}} 33.67\left(\mathrm{CH}_{2} \mathrm{Pd}\right.$) and $68.84\left(\mathrm{CH}_{2} \mathrm{O}\right)$. (5), m.p. $45-47^{\circ} \mathrm{C}$; δ_{H} $4.18\left(\mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 65.70\left(\mathrm{CH}_{2} \mathrm{O}\right)$. (7), m.p. $182-185^{\circ} \mathrm{C}$ (decomp.); δ_{H} 2.51 and $2.57\left(2 \mathrm{~d}, J 8.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pd}\right) ; \delta_{\mathrm{C}} 26.48$ (Me) and 40.40 $\left(\mathrm{CH}_{2} \mathrm{Pd}\right) ; m / z 562\left(M^{+}\right) .(8)$, m.p. $125^{\circ} \mathrm{C}(0.1 \mathrm{mmHg}$, Kugelrohr $) ; v$ $1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 4.08$ and $4.20\left(2 \mathrm{~d}, J 11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 69.10$ $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ and $171.07(\mathrm{C}=\mathrm{O}) ; m / z 199\left(M^{+}\right)$. (9), m.p. $156-158^{\circ} \mathrm{C}$ (decomp); $\delta_{\mathrm{H}} 1.40,1.87\left(2 \mathrm{~d}, J 10.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pd}\right), 3.81,4.28(2 \mathrm{~d}, J 10.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, and $10.67\left(\mathrm{~d}, J_{\mathrm{HP}} 3.0 \mathrm{~Hz}, \mathrm{OH}\right) ; \delta_{\mathrm{C}} 42.30\left(\mathrm{CH}_{2} \mathrm{Pd}\right)$ and $68.29\left(\mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{P}} 30.49$ p.p.m. (11), m.p. $177-179^{\circ} \mathrm{C}$ (decomp.); δ_{H} 2.33 and $2.46\left(2 \mathrm{~d}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pd}\right)$; $\delta_{\mathrm{C}} 41.22\left(\mathrm{CH}_{2} \mathrm{Pd}\right)$. (12), oil; v $1745 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.06,2.19(2 \times \mathrm{MeCO}), 4.07$, and $4.31(2 \mathrm{~d}, J$ $\left.10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 20.07,20.87\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right), 71.34\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 169.16, 170.78, and $172.85\left(\mathrm{C}=\mathrm{N}\right.$ and $2 \times \mathrm{C}=\mathrm{O}$). (14), m.p. $>210^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.50$ and 2.61 (br. s and d, $J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pd}$); $\delta_{\mathrm{C}} 43.15\left(\mathrm{CH}_{2} \mathrm{Pd}\right)$. (15), oil; v $1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.06,2.17(2 \times \mathrm{MeCO}), 4.09$, and $4.19\left(2 \mathrm{~d}, J 11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 68.29\left(\mathrm{CH}_{2} \mathrm{O}\right), 169.65$, and 170.84 ($\mathrm{C}=\mathrm{N}$ and $2 \times \mathrm{C}=\mathrm{O}$); m/z $542\left(M^{+}+1\right)$.

