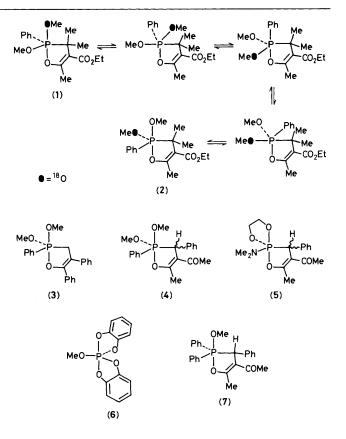
135

¹⁸O Isotopic Shifts in the ³¹P N.M.R. Spectra of Five-co-ordinate Oxyphosphoranes

Paul B. Kay and Stuart Trippett*


Department of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.

Apical and equatorial ¹⁸O produce different isotopic shifts in the ³¹P n.m.r. spectra of oxyphosphoranes; this difference can be used to follow permutational isomerisation by means of variable temperature ³¹P n.m.r. spectroscopy.

Replacement of the ¹⁶O of a PO bond by ¹⁸O produces an upfield isotopic shift in the ³¹P n.m.r. spectrum which, in a given phosphoryl compound, is greater for a P¹⁸O double bond than for a P¹⁸O single bond.¹ This distinction has served as the basis of a number of stereochemical investigations of substitutions at phosphoryl centres.² We now show that, in five co-ordinate trigonal-bipyramidal phosphoranes, different isotopic shifts are produced by apical and equatorial P¹⁸O single bonds and that this difference can be used to follow permutational isomerisation in these compounds by means of variable temperature ³¹P n.m.r. spectroscopy.

Dimethyl phenylphosphonite, PhP(OMe)₂, was prepared using methanol containing 50% of ¹⁸O.³ Its ³¹P n.m.r. spectrum[†] shows three peaks in the ratio 1:2:1 with an isotopic shift due to a single P¹⁸O bond of 11.2 Hz. The adduct⁴ with ethyl isopropylideneacetoacetate shows in its ³¹P n.m.r. spectrum at 0 °C four peaks of equal intensity with shifts, relative to the lowest field, of 4.3, 6.5, and 10.8 Hz. The lowest and highest field peaks are due to unlabelled and doubly labelled adduct respectively; the central peaks are due to adduct having a single ¹⁸O either apical (1) or equatorial (2). These central peaks coalesce at 19 °C leading to ΔG^* for the pseudorotation process (1) \rightleftharpoons (2) of 16.1 kcal mol⁻¹ (1 cal = 4.184 J) in agreement with that deduced from variable temperature ¹H n.m.r. spectroscopy.⁴ Similarly the adduct (3) of the above labelled phenylphosphonite with methylenedeoxybenzoin shows, in its ³¹P n.m.r. spectrum at room temperature, three peaks in the ratio of 1:2:1. Pseudorota-

[†] All ³¹P n.m.r. spectra were determined at 162 MHz (¹H decoupled).

tion to equilibrate apically and equatorially labelled phosphoranes is rapid on the n.m.r. time scale under these conditions. However, at -90 °C, when this pseudorotation is slow, the central peak is split into two with $\Delta\delta$ 1.7 Hz; the isotopic shifts of equatorial and apical ¹⁸O in this phosphorane are 5.3 and 7.0 Hz, although not necessarily in that order. The corresponding isotopic shifts in the two geometrical isomers of the phosphorane (**4**)⁵ are 3.7 and 6.8 Hz (low-field isomer) and 4.5 and 6.4 Hz (high-field isomer).

The size of isotopic shifts produced on ¹³C nuclei decreases with an increase in the s character of the ¹³C orbital bonding to the isotope.⁶ If this is so with ³¹P nuclei, and the large shift observed in PhP(OMe)₂ supports this, then the larger isotopic shifts in the above phosphoranes are due to apical ¹⁸O. Most trigonal-bipyramidal phosphoranes are distorted along the Berry pseudorotation pathway towards square-pyramidal geometry⁷ and this would be expected to affect isotopic shifts. The shifts in the two isomers of the phosphorane (**5**), prepared from ethylene glycol labelled in one position with 50% ¹⁸O,‡ of 3.6 and 4.2 Hz (low-field isomer) and 3.5 and 4.9 Hz (high-field isomer) would then be consistent with distortion towards the square pyramids with axial dimethylamino groups, this distortion decreasing the difference between apical and equatorial positions. It may ultimately be possible

[‡] Prepared from ethylene glycol and $H_2^{18}O$ in the presence of CF₃SO₃H at 0 °C and purified by preparative g.l.c. (Peg 4, 180 °C).

to correlate isotopic shifts with geometry within a given type of phosphorane. The isotopic shifts of 4.2 Hz in (6), which has an equatorial methoxy, and of 3.6 Hz in (7), which has an apical methoxy group, show that, if in a given phosphorane apical ¹⁸O produces the greater isotopic shift, then in different phosphoranes the ranges of apical and equatorial shifts overlap.

We thank the S.E.R.C. for support, and Drs. E. Curzon and O. Howarth of Warwick University for the high-field ³¹P n.m.r. spectra.

Received, 9th October 1984; Com. 1429

References

- 1 G. Lowe, B. V. L. Potter, B. S. Sproat, and W. B. Hull, J. Chem. Soc., Chem. Commun., 1979, 733.
- 2 G. Lowe, Acc. Chem. Res., 1983, 16, 244; S. Trippett and C. L. White, J. Chem. Soc., Chem. Commun., 1984, 251.
- 3 C. B. Sawyer, J. Org. Chem., 1972, 37, 4225.
- 4 D. Gorenstein and F. H. Westheimer, J. Am. Chem. Soc., 1970, 92, 634.
- 5 F. Ramirez, J. F. Pilot, O. P. Madan, and C. P. Smith, J. Am. Chem. Soc., 1968, 90, 1275.
- 6 H. Batiz-Hernandez and R. A. Bernheim, *Prog. Nucl. Magn. Reson. Spectrosc.*, 1967, **3**, 63; J. M. Risley and R. L. Van Etten, *J. Am. Chem. Soc.*, 1980, **102**, 4609.
- 7 R. R. Holmes, Acc. Chem. Res., 1979, 12, 257.