Asymmetric Reduction of Prochiral 3-Aryl-3-oxoesters with Lithium Borohydride using $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Dibenzoylcystine as a Chiral Auxiliary

Kenso Soai,* Takashi Yamanoi, Hitoshi Hikima, and Hidekazu Oyamada

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Optically active 3-aryl-3-hydroxyesters of high enantiomeric excess ($80-92 \%$ e.e.) are obtained by the reduction of 3 -aryl-3-oxoesters with lithium borohydride which has been chirally modified with N, N^{\prime}-dibenzoylcystine and t -butyl alcohol.

Optically active 3-hydroxyesters (1) form an important class of compounds. ${ }^{1}$ Asymmetric reductions of 3 -oxoesters (2) to (1) by microbial ${ }^{2}$ or chemical (modified Raney nickel ${ }^{3}$) methods are known. However, very few examples of the reduction of (2; $\mathbf{R}^{1}=$ aryl) have been reported. ${ }^{2 \mathrm{a}}$

During our continuing study on chemoselective ${ }^{4}$ and asymmetric ${ }^{5}$ reduction with complex borohydrides, we observed a highly enantioselective reduction of $\left(\mathbf{2} ; \mathbf{R}^{1}=\right.$ aryl) by LiBH_{4} partially decomposed with N, N^{\prime}-dibenzoylcystine (3) and $\mathrm{Bu}^{+} \mathrm{OH}$. When ethyl benzoylacetate (2b) was reduced in the presence of $\left(R, R^{\prime}\right)-(\mathbf{3}),(R)-(+)-(\mathbf{1 b})$ was obtained in 94% yield and in 87% enantiomeric excess (\%e.e., Table 1, entry 2). \dagger The chiral auxiliary was recovered in over 70% yield.

[^0]Esters of sec-, tert-alcohols (2c, e), and ethyl 1-naphthoylacetate (2i) were found to be slightly more effectively reduced, thus the \%e.e.'s of (1c, e, i) reached 90% (entries 4, 6, and 10).

a; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$
b; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Et}$
c; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Pr}{ }^{\mathrm{i}}$
d; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Bu}^{\mathrm{n}}$
e; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Bu}^{\mathrm{t}}$
f; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{n}$-Hexyl
g; $\mathrm{R}^{1}=p$-Tolyl, $\mathrm{R}^{2}=\mathrm{Et}$
h; $\mathrm{R}^{1}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Et}$
i; $\mathrm{R}^{1}=1$-Naphthyl, $\mathrm{R}^{2}=\mathrm{Et}$
(3) $=N, N^{\prime}$-Dibenzoylcystine, THF $=$ tetrahydrofuran

Table 1. Asymmetric reduction of (2) to (1). ${ }^{\text {a }}$
(1)

Entry		Yield (\%)	$[\alpha]_{\mathrm{D}^{22}}(c$, solvent $)$	Enantiomeric excess (\%e.e.) ${ }^{\text {b }}$	Configuration
1	a	78	$+16.0^{\circ}(4.80, \mathrm{EtOH})$	84(87c)	$R^{\text {c }}$
2	b	94	$+43.1^{\circ}\left(3.11, \mathrm{CHCl}_{3}\right)$	87(79d)	$R^{\text {c }}$
3 e	b	93	$-41.5^{\circ}\left(3.40, \mathrm{CHCl}_{3}\right)$	$86\left(76{ }^{\text {d }}\right.$)	$S^{\text {d }}$
			$-40.8^{\circ}\left(1.03, \mathrm{CHCl}_{3}\right)^{\mathrm{f}}$		
4	c	83	$+38.7^{\circ}\left(2.61, \mathrm{CHCl}_{3}\right)$	91	
5	d	83	$+35.2^{\circ}\left(3.78, \mathrm{CHCl}_{3}\right)$	80	
6	e	88	$+9.6{ }^{\circ}(3.03, \mathrm{EtOH})$	90	
7	f	66	$+31.6^{\circ}\left(4.87, \mathrm{CHCl}_{3}\right)$	86	
8	g	88	$+38.6^{\circ}\left(4.59, \mathrm{CHCl}_{3}\right)$	85	
9	h	85	$+35.7^{\circ}\left(5.26, \mathrm{CHCl}_{3}\right)$	84	
10	i	90	$+62.3^{\circ}\left(3.55, \mathrm{CHCl}_{3}\right)$	92	

${ }^{\text {a }}$ Molar ratio of $(\mathbf{2}): \mathrm{LiBH}_{4}:(\mathbf{3}): \mathrm{Bu}{ }^{\mathrm{t}} \mathrm{OH}=1.0: 3.6: 1.2: 1.6$. Temperature $\left(-78 \rightarrow-30^{\circ} \mathrm{C}\right)$. Unless otherwise noted, $\left(R, R^{\prime}\right)$ (3) was used. b Determined by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopic analyses of the corresponding (-)- α-methoxy- α-(trifluoromethyl)phenylacetic acid esters, J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 1969, 34, 2543. © Based on the reported value of (R)-(1a) $\{\alpha\}_{\mathrm{D}}{ }^{24}$ $+18.3^{\circ}(c 4.78, \mathrm{EtOH}), \mathrm{C}$. Schoepf and W. Wuest, Ann., 1959, 626, 150. d Based on the reported value of $(S)-(\mathbf{1 b})[\alpha]_{\mathrm{D}}{ }^{22}-54.9^{\circ}$ (c 3.5, CHCl_{3}), S. G. Cohen and S. Y. Weinstein, J. Am. Chem. Soc., 1964, 86, 725. e $\left(S, S^{\prime}\right)-(\mathbf{3})$ was used. ${ }^{\mathrm{f}}$ Data measured in different concentration. See footnote \dagger.

One of the advantages of the present procedure over microbial methods is its easy access to either enantiomer of (1). The reduction of ($\mathbf{2 b}$) using either $\left(R, R^{\prime}\right)-(\mathbf{3})$ or $\left(S, S^{\prime}\right)-(\mathbf{3})$ afforded the corresponding enantiomer of (1b) in almost the same yield and \%e.e. (entries 2 and 3).
This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

Received, 9th October 1984; Com. 1434

References

1 M. Guette, J. Capillon, and J. Guette, Tetrahedron, 1973, 29, 3659; D. Seebach and W. Langer, Helv. Chim. Acta, 1979, 62, 1701; D. A. Evans and L. R. McGee, J. Am. Chem. Soc., 1981, 103, 2876; M. Bednarski, C. Maring, and S. Danishefsky, Tetrahedron Lett., 1983, 3451.
2 (a) B. S. Deol, D. D. Ridley, and G. W. Simpson, Aust. J. Chem., 1976, 29, 2459; (b) D. Seebach and A. Fiechter, Angew. Chem.,

Int. Ed. Engl., 1984, 23, 151; (c) H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, Tetrahedron Lett., 1982, 4051; (d) B. Zhou, A. S. Gopalan, F. VanMiddlesworth, W-R. Shieu, and C. J. Sih, J. Am. Chem. Soc., 1983, 105, 5925; (e) K. Mori, Tetrahedron, 1981, 37, 1341.
3 M. Nakahata, M. Imaida, H. Ozaki, T. Harada, and A. Tai, Bull. Chem. Soc. Jpn., 1982, 55, 2186.
4 K. Soai, H. Oyamada, and A. Ookawa, Synth. Commun., 1982, 12, 463; K. Soai, A. Ookawa, H. Oyamada, and M. Takase, Heterocycles, 1982, 19, 1371; K. Soai, A. Ookawa, and H. Hayashi, J. Chem. Soc., Chem. Commun., 1983, 668; K. Soai and H. Oyamada, Synthesis, 1984, 605; K. Soai, H. Oyamada, M. Takase, and A. Ookawa, Bull. Chem. Soc. Jpn., 1984, 57, 1948; K. Soai, H. Oyamada, and M. Takase, ibid., p. 2327.
5 K. Soai, K. Komiya, Y. Shigematsu, H. Hasegawa, and A. Ookawa, J. Chem. Soc., Chem. Commun., 1982, 1282; K. Soai and H. Hasegawa, J. Chem. Soc., Perkin Trans. I, in the press; K. Soai, T. Yamanoi, and H. Oyamada, Chem. Lett., 1984, 251; K. Soai, H. Oyamada, and T. Yamanoi, J. Chem. Soc., Chem. Commun., 1984, 413.

[^0]: $\dagger(S)-(-)-(\mathbf{l b})$, produced via yeast reduction $\left\{[\alpha]_{D^{20}}-25.8^{\circ}\right.$ (c 1.3, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$, ref. 2a, is claimed to be optically pure based on the lit. value of $[\alpha]_{\mathrm{D}^{20}}+19.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (J. Kenyon, H. Phillips, and G. R. Schutt, J. Chem. Soc., 1935, 1663). However, the specific rotation of our $(S)-(-)-(\mathbf{1 b})$ had a larger value: $[\alpha]_{\mathrm{D}}{ }^{22}-40.8^{\circ}(c 1.03$, CHCl_{3}) (Table 1, entry 3).

