$W_2Cl_3(NMe_2)_3(PMe_2Ph)_2$ and its Reaction with Ethyne to give $(PMe_2Ph)Cl_2W(\mu-NMe_2)-(\mu-\sigma,\eta^2-CHCH_2)(\mu-\eta^2,\sigma-CH_2NMe)WCl(NMe_2)(PMe_2Ph)$: a Compound containing an Azadimetallabicyclobutane Core and a σ,π -Vinyl Ligand

Kazi J. Ahmed, Malcolm H. Chisholm, Kirsten Folting, and John C. Huffman

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405, U.S.A.

 $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2$ and ethyne (1 equiv.) react in toluene at 5 °C to give $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2(C_2H_2)$ which contains a pseudo-tetrahedral $W_2(\mu-C_2H_2)$ core supported by one CI and one NMe₂ bridging group; in toluene at room temperature a further reaction occurs to give $(PMe_2Ph)Cl_2W(\mu-NMe_2)(\mu-\sigma,\eta^2-CHCH_2)(\mu-\eta^2,\sigma-CH_2NMe)$ -WCI(NMe₂)(PMe₂Ph) which is the first example of a compound containing a σ,π -vinyl ligand unsupported by carbonyl ligands and also the first example of an azadimetallabicyclobutane.

We have found that $W_2(NMe_2)_6$ and Me_3SiCl (3 equiv.) react in toluene at room temperature in the presence of PMe_2Ph to give $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2$ which can be isolated as red crystals[‡] [preparation of $W_2Cl_2(NMe_2)_4$ has previously been reported¹]. In the solid state $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2$ adopts the molecular structure shown in (1) in which two four-coordinate tungsten atoms are united by a W \equiv W bond of length 2.338(1) Å. The solution n.m.r. data are consistent with the maintenance of this type of structure in solution.

Concentrated toluene solutions of $W_2Cl_3(NMe_2)_3$ -(PMe_2Ph)₂ react at 5 °C with ethyne (1 equiv.) to give $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2(C_2H_2)$ as a purple microcrystalline precipitate. Addition of PMe₃ (>2 equiv.) gives $W_2Cl_3(NMe_2)_3(PMe_3)_2(C_2H_2)$ by phosphine exchange and this compound, being thermally more stable (*vida infra*), can be recrystallized from toluene.† In the solid state $W_2Cl_3(NMe_2)_3(PMe_3)_2(C_2H_2)$ adopts the pseudo-confacial bioctahedral geometry shown in (2).

There is a central pseudo-tetrahedral W_2C_2 core supported by one chloro and one dimethylamido bridge: W-W = 2.667(1), C-C = 1.39(2), and W-C = 2.10(2) Å (averaged).

† All operations were carried out in dry and oxygen-free solvents and atmospheres (N2). Satisfactory elemental analyses were obtained. Crystal data summary: (a) $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2$ at -160 °C: triclinic, a = 11.909(3), b = 13.271(4), c = 11.551(3) Å, $\alpha =$ 104.76(1), $\beta = 108.64(1)$, $\gamma = 71.09(1)^{\circ}$, Z = 2, $D_c = 1.916$ g cm⁻³, space group $P\overline{1}$; R(F) = 0.036 and $R_w(F) = 0.037$. (b) $W_2Cl_3(NMe_2)_3(PMe_3)_2(C_2H_2)\cdot 1/2C_7H_8$ at -162 °C, where C_7H_8 is a toluene molecule of crystallization: monoclinic, a = 18.069(7), b =14.108(4), c = 11.204(3) Å, $\beta = 106.09(2)^{\circ}$, space group P2/a, Z = 4, $D_c = 2.01$ g cm⁻³; R(F) = 0.041 and $R_w(F) = 0.043$, (c) W₂Cl₃- $(NMe_2)_2(CH_2NMe)(CHCH_2)(PMe_2Ph)_2 \cdot 1/2C_7H_8$ at -106 °C, where C_7H_8 is a toluene molecule of crystallization: triclinic, a = 16.929(7), b = 17.766(8), c = 11.108(4) Å, $\alpha = 103.31(2), \beta = 91.76(2), \gamma = 100.0000$ 78.59(2)°, space group $P\overline{1}$; R(F) = 0.0483 and $R_w(F) = 0.0482$. The asymmetric unit contains two independent molecules (distinguished by the labels A and B in the supplementary materials). Molecule A is slightly disordered with one phenyl group of a PMe₂Ph ligand occupying the same space as the toluene of solvent. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

On the basis of n.m.r. parameters the PMe_2Ph compound appears analogous to the PMe_3 compound (2)‡ and both are similar to previously characterized compounds such as $W_2(OPr^i)_6(py)_2(C_2H_2)$ (py = pyridine). However, in the

Figure 1: A view of the $W_2Cl_3(NMe_2)_2(PMe_2Ph)_2(\mu\text{-}CHCH_2)(\mu\text{-}CH_2NMe)$ molecule.

‡ (a) W₂Cl₃(NMe₂)₃(PMe₂Ph)₂(C₂H₂): ¹H n.m.r. (CD₂Cl₂; 22 °C) δ 1.62 (d, 6H, J_{PH} 9.0 Hz, PMe_AMe_BPh), 1.91 (d, 6H, J_{PH} 8.6 Hz, PMe_AMe_BPh), 2.77 (s, 3H, μ-NMe_AMe_B), 3.01 (s, 3H, μ-NMe_AMe_B), 3.38 (s, 6H, NMe_AMe_B), 3.54 (d, 6H, J_{PH} 3.6 Hz, NMe_AMe_B), 6.57 (td, 1H, J_{PH} 7.9, J_{HH} 2.5, J_{WH} 2.2 Hz, CH_ACH_B), and 8.92 (dt, 1H, J_{PH} 2.0, J_{HH} 2.5, J_{WH} 5.3 Hz, CH_ACH_B); ³¹P{¹H} n.m.r. (CD₂Cl₂; 22 °C) δ -7.41 (s, J_{WP} 217.5, J_{PP} 3.8 Hz); ¹³C n.m.r. of the ¹³CH-¹³CH ligand (gated ¹H decoupled; CD₂Cl₂, -35 °C) δ 163.1 (J_{CC} 17.6, J_{WC} 34.9, J_{CH} 195.5 Hz) and 119.8 (J_{WC} 34.4, J_{CH} 193.7, J_{CP} 9.2 Hz).

(b) $W_2Cl_3(NMe_2)_2(CH_2NMe)(CHCH_2)(PMe_2Ph)_2$: ¹H n.m.r. $(CD_2Cl_2; 22 °C) \delta - 1.05 (d, 1H, J_{PH} 3.9 Hz, NCH_AH_B), 0.92 (d, 1H, J_{PH} 11.5 Hz, NCH_AH_B), 1.73 (d, 3H, J_{PH} 9.0 Hz, PMe_AMe_BPh), 1.84 (d, 3H, J_{PH} 9.4 Hz, PMe_AMe_BPh), 1.86 (d, 3H, J_{PH} 8.3 Hz, P'Me_AMe_BPh), 2.03 (d, 3H, J_{PH} 9.4 Hz, P'Me_AMe_BPh), 2.23 (d, 3H, J_{PH} 2.2 Hz, NMe_AMe_B), 2.63 (s, 3H, N'Me_AMe_B), 3.16 (s, 3H, N'Me), 3.26 (poor d, 3H, NMe_AMe_B), 3.44 (s, 3H, N'Me_AMe_B), 4.93 (unresolved m, 1H, CH_xCH_AH_B), and 14.75 (tt, 1H, J_{PH} 6.5 Hz, J_{HH} 8.3 Hz, CH_xCH_AH_B); ²H n.m.r. (CH_2Cl_2; 22 °C) <math>\delta$ 14.67 (br., 1H, CD_xCD_AD_B), 4.94 (br., 0.75H, CD_xCD_AD_B, and 1.70 (br., 0.25H, CD_xCD_AD_B); ¹H{³¹P} n.m.r. (CD_2Cl_2; 22 °C) δ 4.93 (dd, J_{HH} 8.3 and 3.8 Hz) and 14.75 (t, J_{HH} 8.3 Hz); ³³P{¹H} n.m.r. (CD_2Cl_2; 22 °C) δ -12.28 (d, J_{pp} 2.0 Hz, PMe_2Ph) and -14.23 (d, J_{pp} 2.0 Hz, P'Me_2Ph); ¹³C n.m.r. of the ¹³CH-¹³CH_2 ligand (gated ¹H decoupled; CD_2Cl_2; 22 °C) δ 208.0 (J_{CH} 150, J_{CW} 83, J_{CC} 29, J_{CC} 13.6 Hz, CA_AHC_xH_2), 75.53 (J_{CH} 149, J_{CW} unobserved, J_{CC} 29 Hz, C_AHC_xH_2). present case the acetylenic carbon atoms are different, one being closer to the μ -Cl ligand and the other closer to the μ -NMe₂ ligand, which leads to very different chemical shifts for the W₂(μ -C₂H₂) carbons, $\Delta\delta \sim 40$ p.p.m. The value of J_{CC} (18 Hz) is greatly reduced from that typical of one-bond ¹³C-¹³C couplings (*cf.* J_{C-C} = 35, 69, and 172 Hz for ethane, ethylene and ethyne, respectively²) but is comparable to that seen in W₂(OBu¹)₆(μ -C₂H₂)(CO),³ where J_{CC} is 15.8 Hz for the W₂(μ -C₂H₂) moiety. These low values of J(¹³C-¹³C) appear to be a common feature in ditungsta-tetrahedra, W₂(μ -C₂H₂)-containing compounds,³ and parallel the small ¹J(¹³C-¹³C) recently reported for C₄(OBu¹)₄.⁴

The compound $W_2Cl_3(NMe_2)_3(PMe_2Ph)_2(C_2H_2)$ reacts in toluene at room temperature over a period of 24 h to give $W_2Cl_3(NMe_2)_2(CH_2NMe)(CHCH_2)(PMe_2Ph)_2$ which is the first example of a σ,π -vinyl dinuclear compound unsupported by carbonyl ligands⁵ and the first example of an azadimetallabicyclobutane.⁶ This compound can be isolated in 80% yield as a dark green crystalline material. A view of the molecular structure deduced from an X-ray study is shown in Figure 1. The unit cell contains two crystallographically independent molecules, one having a disordering of one of the PMe_2Ph ligands. The structural features of both molecules are, however, quite similar as is shown for the central $W_2(\mu-CHCH_2)(\mu-CH_2NMe)(\mu-NMe_2)$ skeleton in Figure 2.

A consideration of the bond distances and angles associated with the central core suggests that the μ -CH₂NMe ligand can be considered a 2- ligand and that the μ - σ , π -vinyl is a 3-

Figure 2. Pertinent bond distances (in Å) associated with the central skeleton of the $W_2Cl_3(NMe_2)_2(PMe_2Ph_2)(\mu$ -CHCH₂)(μ -CHC

The ¹³C n.m.r. data are also indicative of the importance of the contributions from (3) and (4). The chemical shift of C_{α} , 208 p.p.m., is in the region expected for an alkylidene carbon resonance, while C_{β} , 75 p.p.m., is where M–C alkyl carbon resonances are seen in several tungsten alkyl-containing compounds.⁷ The value of ¹J(¹³C–¹³C) (28 Hz) in the ¹³C n.m.r. spectrum of the labelled compound containing 92% ¹³C atom enrichment of the vinyl ligand is also consistent with reduced C–C bond order (very small values of ¹J_{C–C} are seen in organic small ring systems²).

The reaction pathway leading to the formation of the μ -CH₂NMe and μ -CHCH₂ ligand is currently under investigation. Reactions employing C_2D_2 lead to the ligand μ -CDCHD with scrambling of H/D over both sites on C_{β} . Prior work has shown that protonation of $M_2(\mu$ -C₂H₂) compounds^{5a,5b} and reactions of $H_2Os_3(CO)_{10}$ with alkynes^{5d,5e} can lead to the formation of μ -CHCH₂ compounds and that the formation of η^2 -RCH=NCH₂R ligands at mononuclear centres can occur in the thermolyses of dialkylamide ligands at elevated or ambient temperatures⁸ (R = H or Me). In the present instance it seems likely that the hydrogen atom from a Me₂N ligand is transferred to the μ -C₂H₂ ligand. Quite probably this occurs by an initial β -hydrogen atom transfer to the metal and the $W_2(\mu$ -CH₂NMe) moiety seen here could prove to be an important functionality in the catalytic C-H/C-D scrambling effected by $W_2(NMe_2)_6$ in its reactions with Me_2ND at 160 °C recently reported by Nugent and co-workers.9

We thank the National Science Foundation and the Wrubel Computing Centre for financial support.

Received, 20th September 1984; Com. 1331

References

- 1 M. Akiyama, M. H. Chisholm, F. A. Cotton, M. W. Extine, and C. A. Murillo, *Inorg, Chem.*, 1977, 16, 2407.
- 2 J. L. Marshall, 'C-C and C-H n.m.r. Couplings,' in 'Methods in Stereochemical Analysis,' Vol. 2, Verlag Chemie, 1983.
- 3 M. H. Chisholm, K. Folting, D. M. Hoffman, and J. C. Huffman, J. Am. Chem. Soc., 1984, **106**, 6794.
- 4 T. Loerzer, R. Machinek, W. Luttke, L. H. Franz, K. D. Malsch, and G. Maier, Angew. Chem., Int. Ed. Engl., 1983, 22, 878.
- 5 For previously reported X-ray structural studies of the σ,π -vinyl ligand, see: (a) $[(\eta^5-C_5H_5)_2Mo_2(CO)_4(CHCHPh)(H_2O)]^+[BF_4]^-$: R. F. Gerlach, D. N. Duffy, and M. D. Curtis, *Organometallics*, 1983, **2**, 1172; (b) Ru₂(CO)₂(µ-H){µ-CHC(H)Me}(η-C₅H₅)₂: R. E. Colborn, A. F. Dyke, S. A. R. Knox, K. A. Mead, and P. Woodward, *J. Chem. Soc., Dalton Trans.*, 1983, 2099; (c) $[Mo_2\{OC(O)CF_3\}(CO)_4(\mu-CHCH_2)(\eta-C_5H_5)]$: J. A. Beck, S. A. R. Knox, G. H. Riding, G. E. Taylor, and M. J. Winter, *J. Organomet. Chem.*, 1980, **202**, C49; (d) HOs₃(CHCH₂)(CO)₁₀: A. G. Orpen, D. Pippard, G. M. Sheldrick, and K. D. Rouse, *Acta Crystallogr.*, Sect. B, 1978, **34**, 2466. (c) HOs₃(CHC(H)Et)(CO)₁₀: J. J. Guy, B. E. Reichert, and G. M. Sheldrick, *ibid.*, 1976, **32**, 3319; (f) Fe₂{µ-CHC(H)Br}(µ-Br)(CO)₆: C. Kruger, T. H. Tsay, F. W. Grevels, and E. Koerner von Gustorf, *Isr. J. Chem.*, 1972, **10**, 201.
- 6 An azametallacyclopropane has been structurally characterized containing the WN(Bu¹)CMe₂ ligand, formed in the reaction between WMe₆ and excess of Bu¹NC: K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1981, 2088.
- 7 For a listing of W–C, W=C, and W=C resonances (^{13}C) , see ref. 3.
- 8 (a) Y. Takahashi, N. Onoyama, Y. Ishikawa, S. Motojima, and K. Sugiyama, *Chem. Lett.*, 1978, 525; (b) C. Airoldi, D. C. Bradley, and G. Vuru, *Transition Met. Chem.*, 1979, 4, 64; (c) J. M. Mayer, C. J. Curtis, and J. E. Bercaw, J. Am. Chem. Soc., 1983, 105, 2651.
- 9 W. A. Nugent, D. W. Ovenall, and S. J. Holmes, *Organometallics*, 1983, 2, 161.