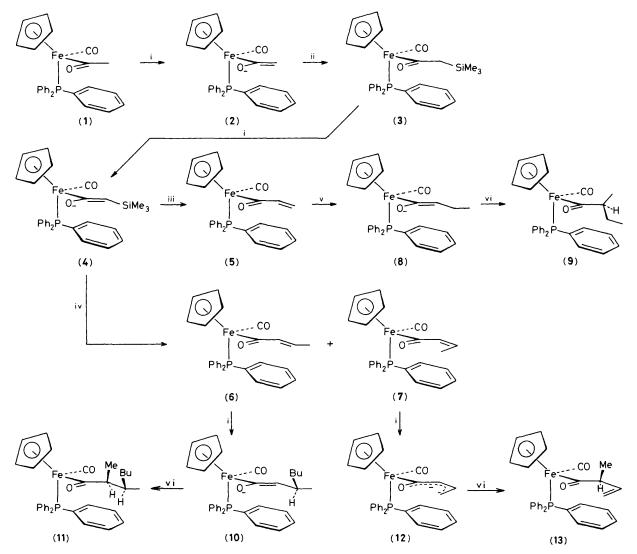
Stereocontrolled Tandem Alkylations: Michael Additions and Subsequent Alkylations of α , β -Unsaturated Acyl Ligands bound to $[(\eta^5-C_5H_5)Fe(CO)(PPh_3)]$


Stephen G. Davies* and Jonathan C. Walker

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 30Y, U.K.

 α , β -Unsaturated acyl complexes of [(η^5 -C₅H₅)Fe(CO)(PPh₃)] can be prepared by the Peterson olefination reaction and are found to undergo tanc em stereoselective Michael additions and subsequent methylations which result in the stereocontrolled synthesis of α - and β -substituted iron acyl complexes.

The possibility of the tandem stereocontrolled formation of two chiral centres *via* Michael additions of carbanions to α,β -unsaturated carbonyl compounds and subsequent alkylation of the enolate thus formed has been recognised for some time.¹ In general, the use of a chiral auxiliary on the α,β -unsaturated carbonyl group has proved the more successful approach¹⁻³ although the use of chiral nucleophiles has also given interesting results.^{1,4} In particular, where part or all of the α,β -unsaturated carbonyl moiety is contained in a ring system, moderate to good stereocontrol can be achieved in the formation of both the α - and β -centres.^{1,2} For the corresponding acyclic cases however, good stereocontrol has only been achieved in the initial Michael addition, *i.e.* at the β - centre.^{1,3,4} We describe here highly stereoselective Michael additions and subsequent alkylations of α , β -unsaturated acyl ligands bound to the chiral [(η^5 -C₅H₅)Fe(CO)(PPh₃)] moiety.

Deprotonation of the acetyl complex (1) at -78 °C with BuⁿLi generated the enolate (2) which on addition of trimethylsilyl chloride underwent exclusive C-silylation⁵ to generate after work-up the α -trimethylsilyl complex (3) (86%). Treatment of (3) in tetrahydrofuran (THF) at -78 °C with BuⁿLi produced the enolate (4) which after addition of a freshly prepared solution of formaldehyde in THF gave the α,β -unsaturated acyl complex (5). A similar Peterson reaction was observed between enolate (4) and acetaldehyde to yield a 2:1 mixture of the *trans* (6) and *cis* (7) isomers. Compounds

Reagents: i, BunLi; ii, Me₃SiCl; iii, CH₂O; iv, MeCHO; v, MeLi; vi, MeI.

(6) and (7) were readily separable by chromatography and the double bond geometries were assigned on the basis of the coupling constants between the olefinic protons (J_{cis} 11; J_{trans} 15 Hz).

Addition of MeLi to a solution of the α,β -unsaturated acyl complex (5) in THF at -78 °C in the presence of methyl iodide stereoselectively (>30:1) generated the (*RS,SR*)diastereoisomer (9) of the s-butyl acyl complex. The observed preferential formation of (9) is consistent with MeLi attacking (5) in the *cisoid* conformation to generate the *E*-enolate (8) which, as we have shown previously, is methylated with high facial stereoselectivity to give (9).6

The *trans*-isomer (6) reacted with BuⁿLi at -78 °C to give the enolate (10). Subsequent addition of methyl iodide stereospecifically gave the (*RSS,SRR*)-diastereoisomer (11); no other diastereoisomers could be detected by ¹H n.m.r. spectroscopy. The relative configuration in (11) of the α -chiral centre to the iron was established by methods described previously⁷ (¹H n.m.r. α -Me δ 0.98) and indicated that, as for complex (5), Michael addition was occurring to (6) in the *cisoid* conformation. The relative configuration of the β -centre was assigned on the assumption that the BuⁿLi would attack (6) in the *cisoid* conformation, with the carbonyl oxygens *anti*, from the unhindered face, *i.e.* the face opposite the blocking phenyl group of the triphenylphosphine ligand.⁸

In contrast to the above Michael additions, the *cis*-isomer (7) underwent exclusive deprotonation with BuⁿLi to give the dienolate (12). Subsequent methylation of (12) gave the (RS,SR)-diastereoisomer (13) as the only detectable product indicating that the *cisoid*-conformation of (7) had been deprotonated.

The above results demonstrate the stereocontrolled tandem alkylations of α , β -unsaturated acyl ligands bound to [(η^{5} -C₅H₅)Fe(CO)(PPh₃)] involving the diastereofacially selective *cis* formation of two carbon–carbon bonds. Since the starting acetyl complex can be resolved⁹ and the resulting acyl complexes can be converted under mild conditions into a variety of carbonyl functionalities,¹⁰ this methodology is currently being extended to asymmetric synthesis.

Received, 17th October 1984; Com. 1466

References

- 1 J. D. Morrison, 'Asymmetric Synthesis,' vol. 2, Academic Press, New York, 1983, pp. 201–241.
- 2 B. A. Barner and A. I. Meyers, J. Am. Chem. Soc., 1984, 106, 1865; G. H. Posner and M. Hulce, Tetrahedron Lett., 1984, 379; G. H. Posner, T. P. Kogan, and M. Hulce, *ibid.*, 1984, 383.
- 3 K. Tomioka, F. Masumi, T. Yamashita, and K. Koga, *Tetrahedron Lett.*, 1984, 333.
- 4 W. Oppolzer, R. Pitteloud, G. Bernardinelli, and K. Baettig, *Tetrahedron Lett.*, 1983, 4975.
- 5 N. Aktogu, H. Felkin, G. J. Baird, S. G. Davies, and O. Watts, J. Organomet. Chem., 1984, 262, 49.
- 6 G. J. Baird, J. A. Bandy, S. G. Davies, and K. Prout, J. Chem. Soc., Chem. Commun., 1983, 1202.
- 7 S. G. Davies, I. M. Dordor, J. C. Walker, and P. Warner, *Tetrahedron Lett.*, 1984, 2709.
- 8 S. G. Davies and J. I. Seeman, Tetrahedron Lett., 1984, 845.
- 9 H. Brunner, in 'The Organic Chemistry of Iron,' vol. 1, ed. E. A. Koerner von Gustorf, F. W. Grevels, and I. Fischler, Academic Press, New York, 1978, pp. 299–343.
- 10 S. G. Davies, 'Organotransition Metal Chemistry: Applications to Organic Synthesis,' Pergamon Press, Oxford, 1982.