A Flavin Mimic possessing Strong Oxidizing Power due to Electron Delocalization: a Benzo-dipteridine

Yumihiko Yano,*^a Michiaki Nakazato,^a and Rafael E. Vasquez^b

^aDepartment *of* Chemistry, Gunma University, Kiryu, Gunma 376, Japan

b Department *of* Applied Chemistry, Hiroshima University, Saijo, Higashi-Hiroshima *724,* Japan

7,14-Diet hyl-3,lO-dimethyl benzo[**1,2-g,4,5-gldipteridine-2,4,9,11(3** H,7 H, 10 H, 14H)-tetrone [benzo-dipteridine **(1**)] shows remarkably high oxidizing activity towards thiols and phenylhydrazine; acid-catalysis is observed in the oxidation of an NADH model by **(1).**

A flavin mimic possessing strong oxidizing power would play an important role in model investigations of flavin coenzymes. Recently we have shown that an 8 -azaflavin¹ and a $6,8$ diazaflavin² exhibit unusually high oxidizing activity. The latter, however, could not be used under alkaline conditions owing to covalent hydration.2

We report here another example of an oxidation-active flavin mimic which has an extended conjugated system consisting of two isoalloxazine skeletons with a benzo unit in common, and also report the detection of acid catalysis in the oxidation of N -benzyl-1,4-dihydronicotinamide (BNAH) by this flavin mimic. Recently Yoneda *et al.* have reported a similar class of 5-deazaflavins which exhibit strong oxidizing ability.³ Compound (1)[†] was prepared from *N,N'*-diethyl-*p*phenylenediamine and 6-chloro-3-methyluraci1.4

Spectroscopic examination showed that **(1)** is reduced by NaBH4, BNAH, thiols, and ethylenediaminetetra-acetic acid-hv, and the product has an absorption maximum at 620 nm (ϵ 2.7 \times 10⁴ dm³ mol⁻¹ cm⁻¹) at pH 7.0 under anaerobic conditions. Reduction with $Na₂S₂O₄$, however, led to an absorption maximum at 502 nm (ε \sim 3 \times 10⁴), which gradually changed to 620 nm. Similar spectral changes were also observed in the reaction of (1) with K_2SO_3 , implying that the intermediate with λ_{max} , 520 nm is the 4a-sulphite adduct.⁵ The final absorption spectra(λ_{max} 620 nm) changed to the starting spectra in the presence of O_2 .

The redox potentials were determined by cyclic voltammetry **[(l):** -120 and -770 mV *vs.* Ag/AgC1/0.1 M KC1 electrode; pH 7.0; 0.1 M Na_2SO_4 ; 25 °C; N_2]. The first 2e-redox potential of **(1)** is about 300 mV more positive than that of the tricyclic analogue **(2) (-439** mV), suggesting that **(1)** should have strong oxidizing ability and the second redox potential (-770 mV) shows that it is difficult for the

i M.p. >300 "C, *M+, mlz* 434, *h,,,,* (pH 7.0) 390 **(E** 1.75 X **lo4** dm3 mol⁻¹ cm⁻¹) and 548 nm (ϵ 1.4 \times 10⁴). Satisfactory elemental analyses were obtained.

2e-reduced form of **(1)** to accept an additional 2e to afford 4e-reduced **(1)** under conventional conditions.

The activity was examined kinetically for the oxidation of thiols [dithiothreitol (DTT) and $HS(CH_2)_2OH$ (ME)], $PhNHNH₂$, and $BNAH$ in aqueous solution under anaerobic conditions. The rate constants were determined by following the absorption increase at 620 nm or decrease at 390 nm. Reactions followed first-order kinetics up to more than 3 half-lives for the thiols and $PhNHNH₂$. The rates were first-order with respect to [DTT] or second-order with respect to [ME], respectively, indicating that the reduced (1) (λ_{max}) 620 nm) is not the 4e- but the 2e-reduced form. The pK_a values of the 2e-reduced **(1)** were determined spectrophotometrically (Scheme 1). \ddagger The lower p K_a compared with that of (2) $(-6.7)^6$ may be reasonably explained by stabilization of the conjugated base owing to electron delocalization. Furthermore the much lower pK_a value and the absorption at longer wavelengths of reduced **(1)** compared with reduced **(2)** strongly suggest that the 2e-reduced form of **(1)** adopts a 1,8-dihydro structure rather than the $1,5$ -dihydro form, as shown in Scheme 1.

Because of the large rate difference between **(1)** and **(2),** the substrate concentration was changed for estimation of the relative rates at the same pH. Table 1 shows that **(1)** exhibits a markedly higher oxidizing activity compared with **(2)** towards

 \pm From the absorption spectra after the reaction with DTT in the pH range 1.84-10.10.

Table 1. Rate constants and relative rates at 25 °C.^a

Substrate	$k_{\rm obs}/\rm min^{-1}$			
	pН	(1)	(2)	Rel. rateb [(1)/(2)]
ME.	6.75	0.735c	3.79×10^{-2} d	2×10^7
DTT.	4.96	6.14e	4.4×10^{-4}	1×10^6
PhNHNH ₂	8.59	2.11g	2.3×10^{-4} h	$>1 \times 10^7$

 $[2(1)] = 1 \times 10^{-5}$ M, $[2] = 5 \times 10^{-5}$ M, 0.1 M buffer $(\mu \ 0.3)$ M). ^b The relative rates were calculated from $k_{\text{obs}}/[\text{ME}]^2$, $k_{\text{obs}}/[\text{DTT}]$, and $k_{\text{obs}}/[\text{PhNHNH}_2]$. **[ME]** = 1 × 10⁻³ M. **d** [ME] = 1 M. **e** $[DTT] = 1 \times 10^{-4}$ M . *f* $[DTT] = 1 \times 10^{-2}$ M . *g* $[PhNHNH_2] =$ 1×10^{-4} M, ^h [PhNHNH₂] = 0.1 M.

Figure 1. pH-rate profiles for the oxidation of BNAH, $[(1)] = [(2)] =$ 1×10^{-5} M, [BNAH] = 1×10^{-4} M, [buffer] = 0.1 M (u 0.3 M with KCI); 25 °C: \bullet , (1); \circlearrowright , (2); pH <8.5; phosphate (\triangle , imidazole), pH >8.5 ; borate.

the thiols and PhNHNH₂ (10⁶-10⁷ fold). It seems to be well established that the mechanism for the oxidation of thiols and $PhNHNH₂$ by flavin models involves 4a-adduct formation; the former gives the disulphide by nucleophilic attack of a second thiol anion7 and the latter affords phenyldiazene by basecatalysed elimination.8 Thus the large rate enhancement may be best accounted for by stabilization of the 4a-adducts due to delocalization of negative charge generated on the N(5) atom. The oxidation of BNAH was found to be acid-catalysed for **(l),** although no buffer catalysis [imidazole buffer $(0.025-0.2~\text{m})$, pH 7.0] was observed. In contrast, no acidcatalysis was observed for **(2)** (Figure 1). **As** shown in Figure 1, the acid catalysis begins to appear below the pH corresponding to the pK_a value of the product [2e-reduced (1)]. Although the oxidation of NADH models by flavin models has been extensively investigated,⁹ acid catalysis in these systems has not been examined because of instability of the NADH model towards acids. Thus the higher pK_a (8.45) of the 2e-reduced **(1)** made it possible to detect acid catalysis. The small rate enhancement of **(1)** above **pH** *ca.* 8.5 may be attributed to the formation of unstable dianion of the reduced $(1).$

We thank Professor E. Ohta (Gunma University) for mass spectral measurements, and one of the referees for helpful comments.

Received, 23rd July 1984; Corn. 1071

References

- 1 Y. Yano, **I.** Yatsu, **E.** Ohya, and **M.** Ohshima, *Chem. Lett.,* 1983, 775; Y. Yano, M. Ohshirna, and **S.** Sutoh, *J. Chem. Soc., Chem. Commun.,* 1984, 695.
- 2 Y. Yano, M. Ohshirna, *S.* Sutoh, and M. Nakazato, *J. Chem.* **Soc.,** *Chem. Commun.,* 1984,695.
- *3* F. Yoneda, K. Kuroda, M. Koga, and T. Ibuka, J. *Chem.* Soc., *Chem. Commun.,* 1984, 872.
- 4 F. Yoneda, Y. Sakurna, M. Ichiba, and K. Shiornura,J. *Am. Chem.* **SOC.,** 1976, 98, 830.
- *⁵***S.** Shinkai, N. Honda, Y. Ishikawa, and 0. Manabe, *Chem. Lett.,* 1984, 327.
- 6 T. C. Bruice. *Prog. Bio-org. Chem.,* 1976, **4,** 1.
- 7 I. Yokoe and T. C. Bruice, *J. Am. Chem.* Soc., 1975,97,450; **E.** L. Loechler and T. C. Hollocher, *ibid.,* 1980, **102.** 7312. 7322, 7328.
- 8 Y. Yano, N. Nakazato, and E. Ohya, *J. Chem. Soc., Perkin Truns. 2,* in the press.
- 9 M. F. Powell, W. H. Wong, and T. C. Bruice, *Proc. Nutl. Acad. Sci. USA,* 1982, **79,** 4604, and references cited therein.