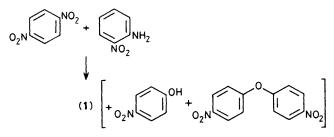
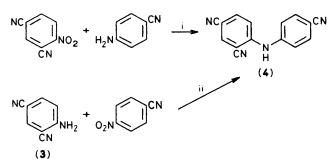
The Synthesis of Diarylamines by Nitro-group Displacement. Activation of Anilines containing Electron-withdrawing Groups by Potassium Carbonate

John H. Gorvin

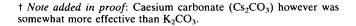
The Wellcome Research Laboratories, Langley Court, Beckenham, Kent, BR3 3BS, U.K. The School of Pharmacy, 29—39 Brunswick Square, London WC1N 1AX, U.K.

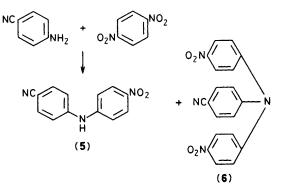

Anilines of enhanced *N*-acidity can displace activated aromatic nitro-groups in dipolar aprotic solvents in the presence of potassium carbonate; the resulting diarylamines are generally obtained free of triarylamine and of the hydrogen displacement product.

Anilines whose *N*-acidity is enhanced by *ortho* or *para* electron-withdrawing groups in dipolar aprotic solvents at 120–130 °C undergo activation by potassium carbonate so that they can displace aromatic nitro-groups whose nucleofugality is similarly enhanced. This activation presumably originates in hydrogen-bonding between the NH₂ group and CO_3^{2-} anions, in association with the K⁺ cation, with induced


development of negative charge on the nitrogen atom; it does not appear to involve full proton transfer leading to the HCO_3^- anion and free nitranion since, in comparable cases, attack by the nitranion is found to be less selective for nitro-group displacement, tending to remove concurrently some other displaceable group, *e.g.* hydrogen, itself activated by the nitro-group. Thus it has been reported¹ that the anion

Scheme 1. Reaction conditions, Bu¹OK, hexamethylphosphoramide, 6 h, 30 °C.¹


Scheme 2. Reaction conditions, K_2CO_3 in dimethylformamide or DMSO, 5 h, 120–130 °C.



Scheme 3. Reaction conditions, i, Bu^tOK, DMSO, 17 h, 25 °C, ii, K_2CO_3 , DMSO, 5 h,120–130 °C.

of *p*-nitroaniline reacts with *o*-dinitrobenzene (Scheme 1) to give the nitro-displacement product (1) and the hydrogen displacement product (2) in a mean molecular ratio of approximately 2:1. When this reaction was conducted in dimethylformamide (DMF) at 120–130 °C in the presence of K_2CO_3 , the diarylamine (1) was obtained (24%) free of (2) (the low yield is attributable to the ready hydroxydenitration² of *o*-dinitrobenzene). The alternative synthesis (Scheme 2) from *p*-dinitrobenzene and *o*-nitroaniline using K_2CO_3 in dimethylsulphoxide (DMSO) or DMF gave the diarylamine (1) in yields of 65–70% and 45–50% respectively. In contrast, sodium carbonate under the same conditions in DMSO showed very slight catalytic activity, while lithium carbonate was almost ineffective.†

In a series of about 25 similar reactions between aromatic nitro-compounds and anilines, variously ortho- or parasubstituted by NO₂, CN, PhCO, or as 1- and 3-xanthen-9-one derivatives, all in DMSO at 120–130 °C in the presence of K_2CO_3 , the secondary amine of type (1) was obtained, in moderate to good yields, free of the hydrogen displacement product, type (2). On the other hand, in a corresponding series of reactions using potassium t-butoxide in DMSO at

Scheme 4. Reaction conditions, K₂CO₃ in DMSO, 120-130 °C.

20—25 °C, displacement of the nitro-group as the sole reaction was found only with more highly activated nitrocompounds. Thus the diarylamine (4) was formed (>80% yield) under these conditions (Scheme 3, i) with no detectable hydrogen displacement product. \ddagger

Since the N-acidity of a diarylamine such as (5) should be greater than that of the parent arylamine, the formation of triarylamine might logically be expected; in fact the reaction shown in Scheme 4, in which (5) (ca. 50% yield) was accompanied by the triarylamine (6) (ca. 3%), was the only instance encountered.§ Possibly the bulk of the displaceable nitro-group normally hinders further reaction. Such a steric effect should not be present in activated fluoro-compounds and indeed the triarvlamine ($\mathbf{6}$) was the major product (64%) yield) together with (5) (5%) when *p*-dinitrobenzene was replaced by p-fluoronitrobenzene, although a 400% excess of the primary amine was employed. In halogen displacements of this latter type, potassium carbonate has been routinely used,5 in the presence of a copper catalyst, to remove hydrogen halide; in such circumstances any catalytic action exerted by the carbonate per se would not have been apparent.

The formation of (4) under the alternative conditions (Scheme 3, ii) from *p*-cyanonitrobenzene and o,p-dicyanoaniline (3) (K₂CO₃, DMSO, 120–130 °C) was competitive with a concurrent oligomerisation of the primary amine (3). This new instance of carbonate activation is under investigation.

I am grateful to Professor Emeritus W. B. Whalley and to Professor W. A. Gibbons for laboratory facilities.

Received, 25th October 1984; Com. 1546

References

- 1 H. Iida, M. Yamazaki, K. Takahashi, and K. Yamada, Nippon Kagaku Kaishi, 1976, 138.
- 2 J. H. Gorvin and D. P. Whalley, J. Chem Soc., Perkin Trans. 1, 1979, 1364.
- 3 J. R. Beck, Tetrahedron, 1978, 34, 2057.
- 4 G. Bartoli and P. E. Tedesco, Acc. Chem. Res., 1977, 10, 125.
- 5 A. P. T. Easson, J. Chem. Soc., 1961, 1029.

‡ It is not immediately clear why attack by the nitranion at a moderately activated nitro-group seems sluggish in comparison with attack by OR^- and, particularly, the more polarizable SR^- anion.³ Presumably repulsion by the electron cloud of the NO_2 group diverts attack elsewhere,⁴ since hydrogen displacement is not specially favoured, involving as it does concomitant reduction of substrate and/or product by the liberated hydride ion (or by the intermediate adduct).

§ Admittedly the primary amines were used in 150% excess with the object of minimising any such effect; yields are based on the activated nitro-compounds.