Rhodolaureol and Rhodolauradiol, Two New Halogenated Tricyclic Sesquiterpenes from a Marine Alga

Antonio G. González, a Julio D. Martín,*a Victor S. Martín,a Ricardo Pérez,a Bruce Tagle,b and Jon Clardyb
a Instituto Universitario de Química Orgánica, Universidad de La Laguna and Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Teneriffe, Spain
b Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, N. Y. 14853, U.S.A.

The structures of two closely related halogenated sesquiterpenes: rhodolaureol (1) and rhodolauradiol (5), isolated from a marine alga of the genus Laurencia, have been determined by X-ray diffraction analysis.

We report herein the structural elucidation of two new minor sesquiterpenes having a carbon skeleton not found previously among naturally occurring terpenoids, which are isolated from extracts of an alga of the genus Laurencia (Rhodomelaceae, Rhodophyta).

Freshly gathered algae were extracted with cold ether under an inert atmosphere and quickly chromatographed on silica gel at low temperature under anhydrous conditions with a variety of eluants. Fractions eluted with light petroleum-ether ($80: 20$) yielded rhodolaureol (1) ($120 \mathrm{mg}, 0.21 \%$ of lipid weight), m.p. $57-58^{\circ} \mathrm{C}$ (from n-hexane), $[\alpha]_{\mathrm{D}}+139^{\circ}$ (c 1.2, CHCl_{3}). High-resolution electron-impact mass spectrometry established, by peak matching, the elemental composition
$\mathrm{C}_{15} \mathrm{H}_{22}{ }^{79} \mathrm{Br}^{35} \mathrm{ClO}$ (obs. 332.0546 ; calc. 332.0542); fragment peaks were observed at $m / z 253.1353\left(M^{+}-\mathrm{Br}\right), 235.1255$ $\left(M^{+}-\mathrm{Br}-\mathrm{H}_{2} \mathrm{O}\right)$, and $217.1593\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{HCl}\right)$. The i.r. spectrum of (1) showed absorptions at $v_{\text {max. }}(\mathrm{KBr}) 3470,1670$, $1370,1230,1190,1030,870$, and $810 \mathrm{~cm}^{-1}$, and its ${ }^{1} \mathrm{H}$ n.m.r. spectrum resonances at $\delta\left(\mathrm{CDCl}_{3}\right) 5.67(\mathrm{~m}, 8-\mathrm{H}), 4.52(\mathrm{~d}$, $J 5 \mathrm{~Hz}, 10-\mathrm{H}), 4.20(\mathrm{~m}, 9-\mathrm{H}), 4.05(\mathrm{~m}, 2-\mathrm{H}), 1.50(\mathrm{br} . \mathrm{s}, 4-\mathrm{and}$ $5-\mathrm{H}_{2}$), and $1.02,0.95$, and 0.93 (each s, 12-, $14-$, and $15-\mathrm{H}_{3}$). The ${ }^{13} \mathrm{C}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right)$ data for (1) assisted by off-resonance and selective proton-noise decoupling techniques showed the presence of 3 Me groups: $\delta 20.5$ (C-14), 24.1 (C-15), and 24.5 (C-12); four CH_{2} groups: 27.3 (C-1), 33.4 (C-5), 36.1 (C-4), and 39.7 (C-13); three heteroatom-bearing CH groups: 65.3

(1) $R=H$
(2) $\mathrm{R}=\mathrm{Ac}$
(3) $\mathrm{R}=\mathrm{H}$

(4) $R=B r$

(5) $R=H$
(6) $R=A C$
(C-2), 67.3 (C-9), and $69.8(\mathrm{C}-10) ; 3$ fully substituted C atoms: $35.0(\mathrm{C}-3), 38.5(\mathrm{C}-6)$, and 43.1 (C-11); and one trisubstituted double bond: 118.4 (C-8) and 144.2 (C-7).

Treatment of (1) with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine gave the acetate (2) \dagger which on mild hydrolysis with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in tetrahydrofuran (THF)- $\mathrm{H}_{2} \mathrm{O}$ produced the alcohol (1) and the α, β-unsaturated ketone (3) \dagger Compound (3) was also obtained when an ethereal solution of rhodolaureol (1) was stirred with neutral alumina at room temperature. ${ }^{1}$ Treatment of (1) with pyridinium chlorochromate (2 equiv.) in dry methylene chloride gave (4). \dagger Reduction of (4) with $\mathrm{Zn}-\mathrm{AcOH}$ in ether yielded the debrominated ketone (3). The acetate (6) was isolated following acetylation of the non-resolved and more polar chromatographic fractions: m.p. $124-126^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+45^{\circ}$ (c $\left.1.12, \mathrm{CHCl}_{3}\right) . \dagger$ The crystal structures of (4) and (6) were determined.

Crystal data: (4), $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrClO}$, monoclinic, $a=8.383(2)$, $b=7.898(1), c=11.064(2) \AA, \beta=92.75(2)^{\circ}, Z=1$, space group $P 2_{1}$ (from systematic absences). Data were collected to $2 \theta=114^{\circ}$ using graphite-monochromated $\mathrm{Cu}-K_{\alpha}$ radiation ($1.54178 \AA$) and the ω-scan technique. 2451 Reflections were collected, and the 1892 with $I>3 \sigma(I)$ used in the structure
\dagger Compound (2), oil, $[\alpha]_{D}+218^{\circ}\left(c 2.5, \mathrm{CHCl}_{3}\right), M^{+}, m / z ~ 374,376$, $378 ; v_{\text {max }}$ (KBr) 2940, 1735, 1370, 1235, 1030, and $815 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.50$ (br. s, 4 H$), 2.08$ (s, $3 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J 5 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.45(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ n.m.r. $20.0(\mathrm{q}), 21.0(\mathrm{q}), 24.0(\mathrm{q}), 27.2(\mathrm{t}), 33.3(\mathrm{t}), 35.0(\mathrm{~s}), 36.0(\mathrm{t}), 38.5(\mathrm{~s})$, 39.4 (t), 43.0 (s), 61.6 (d), 65.2 (d), 68.3 (d), 116.1 (d), and 146.1 (s). Compound (3), oil, $[\alpha]_{\mathrm{D}}+35^{\circ}$ (c 1.3, CHCl_{3}), $M^{+}, m / z 252,254$; $v_{\text {max }}(\mathrm{KBr}) 2970,1660,1460,1370,1280,890$, and $805 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 6 \mathrm{H}), 1.02$ (s, 3 H), 1.60 (br. s, 2 H), 2.22 (br. s, 2 H) , $4.05(\mathrm{~m}, 1 \mathrm{H})$, and $5.88(\mathrm{~s}, 1 \mathrm{H})$. Compound (4), m.p. $144-146^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}+128^{\circ}\left(c 0.46, \mathrm{CHCl}_{3}\right), M^{+}, m / z 330,332,334$; $v_{\text {max. }}(\mathrm{KBr}) 2970,2295,1660,1640,1365,1240,1170$, and $870 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 0.97$ (s, 3H), 1.03 (s, 3H), 1.07 (s, 3H), 1.65 (br.s, 2 H), $4.09(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, and $5.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ n.m.r. $19.1(\mathrm{q}), 24.0(\mathrm{q}), 24.1(\mathrm{q}), 26.0(\mathrm{t}), 32.7(\mathrm{t}), 35.5(\mathrm{~s}), 37.0(\mathrm{t}), 39.1(\mathrm{t})$, 42.2 (s), 43.8 (s), 64.2 (d), 66.2 (d), 121.4 (d), 140.0 (s), and 189.5 (d). Analytical data for rhodolauradiol acetate (6) indicated the formula $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrClO}_{3} ; m / z 295,297\left(M^{+}-\mathrm{Br}-\mathrm{H}_{2} \mathrm{O}\right) ; v_{\text {max }}$ (KBr) 3540, $1760,1070,825$, and $700 \mathrm{~cm}^{-1}$; \cdot H n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 5.36$ (dd, $J 6$ and 4 $\mathrm{Hz}, 9-\mathrm{H}), 4.41(\mathrm{~d}, J 4 \mathrm{~Hz}, 10-\mathrm{H}), 4.10(\mathrm{~d}$ of dd, $J 11,4$, and 0.5 Hz , $2-\mathrm{H}$), 2.1 ($\mathrm{s}, \mathrm{MeCO}_{2}$), and 1.34, 0.96, and 0.92 (each s, 14-, 12-, and $\left.15-\mathrm{H}_{3}\right)$; ${ }^{13} \mathrm{C}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 73.2$ (C-9), 72.9 (C-7), 66.2 (C-2), 63.2 (C-10), 47.9 (C-13), 44.1 (C-11), 41.0 (C-6), 40.6 (C-8), 35.7 (C-4), 34.2 (C-3), 32.9 (C-5), 27.8 (C-12), 25.0 (C-15), 24.1 (C-1), and 21.9 (C-14).

(a)

Figure 1. Crystal structures of (a) the tricyclic ketone (4); (b) the acetate (6).
solution. A phasing model was achieved by the heavy-atom method, but was slightly complicated by the nearly identical y-co-ordinates of Br and $\mathrm{Cl} .{ }^{2}$ Full-matrix least-squares refinement with fixed isotropic hydrogen and anisotropic nonhydrogen atoms, and anomalous scattering corrections for Br and Cl have converged to $R=0.073$. The structure is shown in Figure 1(a). \ddagger

Compound (6), $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrClO}_{3}$, orthorhombic, $a=$ $11.750(3), \quad b=9.553(4), c=15.510(6) \AA, Z=1$, space group $P_{1} 2_{1} 2_{1}$ (from systematic absences). 1367 Reflections were collected as for (4), and the 1326 'observed' used in the solution. Full-matrix least-squares refinement with fixed isotropic hydrogen and anisotropic non-hydrogen atoms, and anomalous dispersion corrections for Br and Cl converged to $R=0.080$. The structure is shown in Figure 1(b). \ddagger

This work was supported by grants from the C.A.I.C.Y.T. (to J. D. M.) and the N.I.H. (to J. C.).

Received, 1st November 1984; Com. 1552

References

1 A. G. González, J. D. Martin, V S. Martin, and M. Norte, Tetrahedron Lett., 1979, 2719.
2 The programs used are as described by E. Arnold and J. Clardy, J. Am. Chem. Soc., 1981, 103, 1243.

[^0]
[^0]: \ddagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

