Conversion of a μ_{3}-Alkylidyne into a μ_{3}-Acyl Group at a Trimetal Centre; X-Ray Crystal Structures of the Phosphido Bridged Complexes $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh} \mathbf{h}_{2}(\mathrm{CO})_{5}-\right.\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$

John C. Jeffery* and J. G. Lawrence-Smith

Department of Inorganic Chemistry, The University, Bristol BS8 1TS, U.K.

Treatment of the compound $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ affords the phosphido-bridged acyl complexes $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, as well as the compound $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$; the structures of the acyl species have been established by X-ray crystallography.

The availability of stable but reactive alkylidyne complexes such as (1) ${ }^{1}$ affords a potential entry to the chemistry of organic groups attached to heterotrimetal clusters. Herein we report the synthesis of new phosphido-bridged derivatives of (1), and demonstrate for the first time the conversion of a μ_{3}-alkylidyne ligand into a μ_{3}-acyl group at a trimetal centre.

Treatment of (1) with an excess of $\mathrm{PPh}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ initially affords a solution in which the predominant species present is the bis-phosphine complex (2), analogous to the known complexes $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{6} \mathrm{~L}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad(\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ and $\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}$ or $\left.\mathrm{L}_{2}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right) .{ }^{1}$ Solutions of (2) rearrange $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 8 \mathrm{~h}, 20^{\circ} \mathrm{C}\right)$ and afford

(1)

(2)

(3)

(4)
(5)

Scheme 1. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\mathrm{PPh}_{2} \mathrm{H}, \mathrm{cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$; (i) $2 \times \mathrm{L}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2},-2 \mathrm{CO}$, (ii) -CO , (iii) $-\mathrm{H}_{2}$, (iv) $\mathrm{CO}+\mathrm{L}$.
after chromatography on alumina the complexes (4) (ca. 20%) and (5) ($>50 \%$), together with small quantities of a μ_{2}-acyl complex (6) (ca. 10\%). Spectroscopic data \dagger for the new complexes (4)-(6) are consistent with the structures established by X-ray diffraction. \ddagger

In (5) (Figure 1) the μ_{3}-acyl ligand acts as a five-electron donor. The $\mathrm{RCH}_{2} \mathrm{C}-\mathrm{O}$ moiety is η^{2}-bound to tungsten with σ-attachments to the two iron atoms. The acyl $\mathrm{C}(5)-\mathrm{O}(5)$ distance of 1.43(1) \AA is characteristic of a C-O single bond, and is substantially longer than found in the related homonuclear tri-iron complexes $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{OCMe}\right)(\mathrm{CO})_{9}\right]$ $[1.32(2) \AA]$ and $\left[\mathrm{Fe}_{3}(\mu-\mathrm{H})\left(\mu_{3}\right.\right.$-OCMe $\left.)(\mathrm{CO})_{9}\right][1.325(5) \AA] .^{2}$ The marked reduction of the acyl $\mathrm{C}-\mathrm{O}$ bond order found in (5), and to a lesser extent in $\left[\mathrm{WOs}_{3}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)(\mathrm{CO})_{11-}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{RCH}_{2} \mathrm{C}-\mathrm{O} 1.37(2) \AA\right],{ }^{3}$ may well reflect a strong interaction between the acyl oxygen atoms and the oxophilic tungsten centres in these clusters. The conversion of a μ_{3}-alkylidyne group into an activated μ_{3}-acyl ligand may be relevant to the chemistry of CO reduction on metal surfaces. ${ }^{4,5}$

The structure of (6) (Figure 2) shows a W-Fe-Fe chain of metal atoms which evidently arises via cleavage of an $\mathrm{Fe}-\mathrm{W}$ bond in (1). The $\mathrm{Fe}-\mathrm{Fe}$ bond is spanned by a μ-acyl ligand which now formally acts as a three-electron donor. In contrast with (5), the acyl C(10)-O(10) bond in (6) [1.255(6) \AA] retains appreciable multiple bond character, a feature which is also apparent in the related phosphido-bridged complex $\left[\mathrm{Fe}_{2^{-}}\right.$ $\left.(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right][\mathrm{MeC}-\mathrm{O} 1.244(8) \AA] .{ }^{6}$
\dagger Selected spectroscopic data (i.r. measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H}$ n.m.r. in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; coupling constants in Hz). Compound (4), i.r., v_{co} (max.) 2018s, $1972 \mathrm{~s}, 1950 \mathrm{~s}, 1930 \mathrm{~s}$, and $1884 \mathrm{w} \mathrm{cm}{ }^{-1}$; n.m.r.: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, \delta 186.8[\mathrm{~d}$, $\mathrm{FeW}\left(\mu-\mathrm{PPh}_{2}\right), J(\mathrm{PP}) 20, J(\mathrm{WP})$ 332], and 199.4 p.p.m. [d, $\mathrm{Fe}_{2}(\mu-$ PPh_{2}), $J(\mathrm{PP})$ 20]; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \delta 220.6\left[\mathrm{t}, \mu_{3} \mathrm{C}, J(\mathrm{PC}) 20\right], 214.0$ [br., $\left.\mathrm{Fe}(\mathrm{CO})_{3}\right], 212.6$ [$\left.\mathrm{t}, \mathrm{FeCO}, J(\mathrm{PC}) 9\right], 211.8$ [d, WCO, $J(\mathrm{PC})$ 15], and 210.4 [t , FeCO, $J(\mathrm{PC}) 9$ 9. Compound (5), i.r., v_{CO} (max.) 2007s, 1970s, $1951 \mathrm{~m}, 1916 \mathrm{~m}$, and $1785 \mathrm{w} \mathrm{cm}^{-1}$; n.m.r.: ${ }^{1} \mathrm{H}, \delta 2.23$ (s, 3 H , $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$), 3.18 and 3.68 [$\left.2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, J(\mathrm{HH}) 16\right]$, and $4.85\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, \delta 120.2$ [d, $\mathrm{FeW}\left(\mu-\mathrm{PPh}_{2}\right), J(\mathrm{PP}) 58$, $J(\mathrm{WP}) 308]$ and 227.4 p.p.m. [d, $\left.\mathrm{Fe}_{2}\left(\mu-\mathrm{PPh}_{2}\right), J(\mathrm{PP}) 58\right] ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \delta$ 258.5 [s, W $(\mu-\mathrm{CO})], 218.8$ [d, FeCO, $J(\mathrm{PC}) 7], 217.1$ (s, $\mu_{3}-$ $\left.\mathrm{OCCH}_{2} \mathrm{R}\right), 216.5$ [t, FeCO, $\left.J(\mathrm{PC}) 12\right], 208.7$ [$\mathrm{t}, \mathrm{FeCO}, J(\mathrm{PC})$ 13], 197.3 [d, $\mathrm{FeCO}, J(\mathrm{PC}) 12$], and 53.5 (s, $\mathrm{CH}_{2} \mathrm{R}$). Compound (6), i.r., v_{CO} (max.) $1992 \mathrm{~s}, 1961 \mathrm{~s}, 1933 \mathrm{~s}, 1915 \mathrm{~m}, 1904 \mathrm{~m}$, and $1835 \mathrm{~m} \mathrm{~cm}^{-1}$; n.m.r.: ${ }^{1} \mathrm{H}, \delta 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right), 4.22$ and $4.36[2 \times \mathrm{d}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, J(\mathrm{HH}) 17$], 4.45 [d of d, $1 \mathrm{H}, \mathrm{PPh}_{2} \mathrm{H}, J(\mathrm{PH}) 354$ and 11], and $4.61\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, \delta 44.0$ [d of d, $\mathrm{FePPh}_{2} \mathrm{H}, \mathrm{J}(\mathrm{PP})$ 27 and 5], 154.4 [d of d, $\mathrm{FeW}\left(\mu-\mathrm{PPh}_{2}\right), J(\mathrm{PP}) 29$ and 5, $J(\mathrm{WP})$ 303], and 192.1 p.p.m. [d of d, $\mathrm{Fe}_{2}\left(\mu-\mathrm{PPh}_{2}\right), J(\mathrm{PP}) 27$ and 29].
\ddagger Crystal data. (5): $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~W}, M=1003.6$, triclinic, space group $P \overline{1}, a=10.430(7), b=10.767(9), c=19.372(20) \AA, \alpha=$ $77.37(8), \beta=78.83(7), \gamma=103.74(6)^{\circ}, U=1992(3) \AA^{3}, Z=2, D_{\mathrm{x}}=$ $1.67 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=992, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=39.9 \mathrm{~cm}^{-1}$. Current $R=0.045$ ($R_{\mathrm{w}} 0.045$) for 4189 absorption-corrected reflections [$293 \mathrm{~K}, \theta-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}, I \geqslant 2.5 \sigma(I)$, Nicolet $P 2_{1}$ diffractometer, Mo- $K_{\alpha}(\bar{\lambda}=$ $0.71069 \AA$)]. For (6) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{Fe}_{2} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{~W} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=$ 1303.4 , triclinic, space group $P \overline{1}, a=11.120(4), b=13.289(4), c=$ 19.083(5) $\AA, \alpha=90.96(2), \beta=99.59(2), \gamma=80.88(3)^{\circ}, U=2745(1)$ $\AA^{3}, Z=2, D_{\mathrm{x}}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1300, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=28.90$ cm^{-1}. Current $R=0.036\left(R_{\mathrm{w}} 0.038\right)$ for 7114 absorption-corrected reflections $\left\{293 \mathrm{~K}, \theta-2 \theta\right.$ scans, $2 \theta \leqslant 50^{\circ}, I \geqslant 2.5 \sigma(I)$, Nicolet $P 3$ diffractometer, Mo- $\left.K_{\alpha}(\bar{\pi}=0.71069 \AA)\right]$. The structure of (4) shows no unusual features and is not included here.
The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Figure 1. Molecular structure of $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (5). Dimensions: W-Fe(1) 2.723(1), W-Fe(2) $2.712(1), \mathrm{Fe}(1)-\mathrm{Fe}(2) 2.616(2), \mathrm{W}-\mathrm{C}(5)$ 2.155(7), $\mathrm{Fe}(1)-\mathrm{C}(5)$ $1.913(10), \quad \mathrm{W}-\mathrm{O}(5) 2.129(6), \mathrm{Fe}(2)-\mathrm{O}(5) 2.011(6), \mathrm{C}(5)-\mathrm{O}(5)$ $1.431(10), \mathrm{C}(5)-\mathrm{C}(6) 1.551(13) \AA, \mathrm{W}-\mathrm{C}(9)-\mathrm{O}(9) 161.9(7)^{\circ}$.

Figure 2. Molecular structure of $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{2}-\mathrm{OCCH}_{2} \mathrm{R}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (6). Dimensions: W-Fe(2) 2.940(1), $\mathrm{Fe}(1)-\mathrm{Fe}(2) 2.667(1), \mathrm{Fe}(1)-\mathrm{C}(10) 1.936(4), \mathrm{Fe}(2)-\mathrm{O}(10) 2.038(3)$, $\mathrm{C}(10)-\mathrm{O}(10) 1.255(6), \mathrm{C}(10)-\mathrm{C}(11) 1.512(7) \AA, \mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{W}$ 147.7(1) ${ }^{\circ}$.

A possible mechanism for the synthesis of (4)-(6) is shown (Scheme 1) and involves an intermediate (3) with an asymmetrically bridging alkyl ligand. ${ }^{7}$ Formation of (5) involves migration of two hydrogen atoms from terminal $\mathrm{PPh}_{2} \mathrm{H}$ ligands in (2) to the μ_{3}-alkylidyne carbon atom, followed by migration of the resulting alkyl to metal-bound CO . Competitive loss of dihydrogen prior to alkyl migration would give (4), whereas attack of $\mathrm{PPh}_{2} \mathrm{H}$ and CO on the alkyl intermediate
(3), followed by $\mathrm{Fe}-\mathrm{W}$ bond cleavage and insertion, could give (6). The potential involvement of alkyl intermediates in the formation of (5) and (6) finds support in the recent observation of the phosphite-promoted conversion of an asymmetrically bridging alkyl into a bridging acyl at a $\mathrm{Re}-\mathrm{W}$ heterodimetal centre. ${ }^{7}$
We have recently observed that $\mathrm{Ph}_{2} \mathrm{PH}$ reacts with the related cluster $\left[\mathrm{Co}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CMe}\right)(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ to give high yields of the μ-hydrido- μ-phosphido cluster $\left[\mathrm{Co}_{2} \mathrm{~W}(\mu-\mathrm{H})\right.$ -$\left.\left(\mu_{3}-\mathrm{CMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{8}$ It therefore seems probable that attack of $\mathrm{R}_{2} \mathrm{PH}(\mathrm{R}=\mathrm{Ph}$ or alkyl) on pre-formed alkylidyne, or related alkylidene clusters, may offer a general approach for the synthesis of new phosphido-bridged derivatives.

Received, 17th September 1984; Com. 1319

References

1 J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1383; L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, ibid., 1983, 101.

2 W. K. Wong, K. W. Chiu, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1983, 1557; 1981, 2496.
3 J. T. Park, J. R. Shapley, M. R. Churchill, and C. Bueno, Inorg. Chem., 1983, 22, 1579.
4 J. R. Shapley and J. T. Park, J. Am. Chem. Soc., 1984, 106, 1144, and ref. 9 therein.
5 C. P. Casey, P. J. Fagan, and W. H. Miles, J. Am. Chem. Soc., 1982, 104, 1134, and refs. 1-7 therein.
6 W. F. Yu, J. Gallucci, and A. Wojcicki, J. Am. Chem. Soc., 1983, 105, 4826.
7 J. C. Jeffery, A. G. Orpen, W. T. Robinson, F. G. A. Stone, and M. J. Went, J. Chem. Soc., Chem. Commun., 1984, 396.

8 J. C. Jeffery and J. G. Lawrence-Smith, J. Organomet. Chem., in the press.

