321

Mechanism of Syngas Conversion into C_2 -oxygenates such as Ethanol catalysed on a SiO₂-supported Rh–Ti Catalyst

Masaru Ichikawat and Takakazu Fukushima

Sagami Chemical Research Center, 4-4-1 Nishi-Onuma, Sagamihara, Kanagawa 229, Japan

¹³C-Labelling studies on a Rh–Ti/SiO₂ catalyst using ¹³CO and ¹³CH₃OH revealed that in a CO–H₂ reaction C₂-oxygenates such as ethanol are formed from a common precursor *e.g.* acyl, being formed by CO insertion onto surface CH₃/CH₂ moleties derived from CO dissociation and the subsequent reaction of the carbon product with hydrogen.

In comparison with other transition metal catalysts, Rh metal catalyses conversion of syngas (CO+H₂) into C₂-oxygenates such as EtOH, MeCHO, and MeCO₂H.¹ We have previously reported² that highly dispersed Rh crystallites, which are derived from carbonyl clusters, synthesize ethanol preferentially when impregnated on ZrO₂, TiO₂, and La₂O₃, while they catalyse mainly synthesis of MeOH on ZnO and MgO and synthesis of hydrocarbons on SiO₂ and Al₂O₃ at an atmospheric pressure of CO-H₂. Moreover, the addition of Mn,³ Zr, and Ti⁴ ions to Rh/SiO₂ significantly enhanced the vields of C₂-oxygenates; addition of these transition metal ions also promotes formation of the related oxygenate species from CO and H_2 on the catalyst surface.⁵ Nevertheless, it is not known whether the C2-oxygenates are formed by a Fischer-Tropsch type chain-growth and/or an alcohol homologation process, similar to homogeneous catalysis by Co and Rh complexes,6 which show Schulz-Flory distribution.7 Consequently, to understand the basic mechanism of C₂-oxygenate formation in a CO-H₂ reaction catalysed by heterogeneous Rh catalysts, we have conducted ¹³C-labelling studies employing enriched ¹³CO and ¹³CH₃OH on a Rh-Ti/SiO₂ catalyst. We report here that in all the ¹³C-tracer experiments the results indicate selective incorporation of ¹³C-enriched surface

carbon only at the methyl carbon of C₂-oxygenates such as ethanol and essentially none at the carbonyl-derived fragment -CH₂OH and -CHO, and confirm a minor or negligible contribution of the methanol homologation process to form C₂-oxygenates, which contrasts that proposed previously by Katzer *et al.* on Rh/TiO₂ catalyst.⁸

Labelling studies using enriched ¹³CO (99% enrichment) and ¹³CH₃OH (90%), purchased from Amersham Int. Co., were performed at an atmospheric pressure of CO-H₂ on SiO₂-supported Rh-Ti catalyst. An all-glass closed circulating vessel equipped with a U-type tubing reactor was used and operated in a flow mode. Rh-Ti (1:1 atomic ratio; Rh 4.6 wt% loading on SiO₂) catalyst (2.5 g) was charged in the reactor. The catalyst was conventionally prepared by coimpregnation of RhCl₃·3H₂O and TiCl₄ from methanol solution onto SiO₂ gel (Davison No. 57, ca. 20 mesh, 280 m²/g) and was subsequently reduced in H₂-flow at 400 °C. The ¹³C-isotopically enriched oxygenated products from the CO-H₂ reaction were collected by dissolving in cooled water (2-5 ml, 5 °C) and analysed separately by means of a g.c.-mass spectrometer (JEOL JMS-DX300) with g.c. on Chromosorb 101 (2 m, 135°C) and 3% poly(ethylene glycol) 20м (3m) columns. Gas-phase analysis for CH₄, CO, and CO₂ was also performed by mass spectrometry (SHIMADZU-QP 1000) with g.c. on an active carbon 1 m column.

The ${}^{13}C$ -tracer experiments were conducted on freshly reduced Rh–Ti/SiO₂, which had been treated with ${}^{13}CO$ to

⁺ Present address: Ipatieff Laboratory, Department of Chemistry, Northwestern University, Evanston, Ill. 60201, U.S.A.

 Table 1. Isotopic composition of MeOH, EtOH, and AcH in CO-H2 reaction over the Rh-Ti/SiO2 catalyst labelled with ¹³C-carbon deposited by ¹³CO dissociation. Rh: 4.6 mmol/5 g-cat.

 Reaction MeOH/%
 EtOH/%
 AcH/%

 [¹³C]^a
 time^b
 Colspan="2">Colspan="2"Colspa=""2"Colspan="2"Colspan="2"Colspan="2"Colspa=

Run	[¹³ C] ^a (mmol)	Reaction time ^b /min	MeOH/%		EtOH/%			AcH/%	
			CH ₃ OH	¹³ CH ₃ OH	CH₃CH₂OH	¹³ CH ₃ CH ₂ OH	¹³ CH ₃ ¹³ CH ₂ OH	СН₃СНО	¹³ CH ₃ CHO
		20	100	0	65	34	1	79	21
1	0.9	25	99	1	76	22	2	85	15
		38	100	0	84	16	0	90	10
		10	100	0	38	58	4	60	39
2	1.2	20	99	1	61	37	2	82	17
		36	99	1	85	14	1	91	9

^a [¹³C] Was estimated from the ¹³CO₂ formed in the Boudouard reaction at 200–230 °C.

^b Flow-mode operating reaction, 1 atm, CO/H₂ 0.5, 200–210 °C, specific velocity = 400 h⁻¹.

enrich the surface carbide by the Boudouard reaction at 200-220 °C [2¹³CO \rightleftharpoons ¹³C + ¹³CO₂] in a closed circulating reactor. The amount of ¹³C-carbide on the Rh-Ti catalyst $(^{13}C/Rh)$ was estimated from the $^{13}CO_2$ formed. The catalyst was subsequently exposed to ¹²CO (1 atm, 25 °C) to exchange associatively chemisorbed ¹³CO before introducing a mixture of ¹²CO and H₂ (1 atm, CO/H₂ 0.5 vol%, specific velocity = 400 h^{-1}) in a flow-mode; the temperature was raised to 200 °C. The products formed were dissolved in water, and sampled at a given interval during the CO-H₂ reaction. The ¹³C compositions of each fraction were completely analysed by g.c-mass spectrometry (m.s.), the results of which are shown in Table 1. The product selectivities of EtOH, MeCHO, MeOH, CH_4 , and others were 42%, 6%, 4%, 38%, and 11% (based on carbon) respectively, observed on the Rh-Ti/SiO₂ catalyst with ¹³C/Rh 0.4. G.c.-m.s. analysis of the ethanol and acetaldehyde fractions, as shown in Table 1, indicates a significant ¹³C-enrichment only at the methyl carbon of ethanol and acetaldehyde and a negligible enrichment at the carbonyl-derived fragments, e.g. -CH₂OH and -CHO. Methane in the effluent gas was formed with parallel enrichment of ¹³C. In contrast, a trace amount of ¹³C-labelled product was detected in all the methanol fractions. It is interesting that the % abundance of ¹³C-labelled fractions in

Figure 1. Isotopic composition of MeOH, EtOH, and AcH in the reaction of CO-H₂ over Rh-Ti/SiO₂ labelled with ¹³C deposited by ¹³CO dissociation. Rh-Ti ratio 1:1, ¹³C 0.9–1.2 mmol/Rh 4.6 mmol, CO-H₂ 1:2 vol ratio, 1 atm, 200–210 °C, specific velocity 400 h⁻¹.

the ethanol and acetaldehyde, ${}^{13}CH_3CH_2OH$ and ${}^{13}CH_3CHO$, formed, could be extrapolated to above 80% at the initial reaction of ${}^{12}CO+H_2$ with the ${}^{13}C$ -enriched Rh–Ti surface, as shown in Figure 1. Accordingly, these results suggest that one carbon-unit, the 'methyl' of C₂-oxygenates, should come from the surface carbon, *i.e.* the CH₃/CH₂ unit is formed by CO dissociation on the Rh metal, and a subsequent insertion reaction of CO provides a common precursor of C₂-oxygenates, possibly a CH₃CO species on the catalyst. Absence of incorporation of surface carbon into the methanol fraction indicates that methanol is formed in the hydrogenation of C₂-oxygenates. Interestingly, we found that

Table 2. Isotopic composition of EtOH, AcH, and methyl acetate in a CO-H₂ reaction by feeding ¹³CH₃OH (90%), 1.0 mmol/h, over the Rh-Ti (1:1)/SiO₂) catalyst. ¹³CH₃OH (90%) + CO + H₂(CO/H₂ 0.5) 1 atm, 205-210 °C, specific velocity = 400 h⁻¹.

	Run 1 (20 min)	Run 2 (35 min)	Run 3 (60 min)
	70	70	/0
¹³ CH ₃ OH	/5	/0	01
CH ₃ OH	25	30	39
¹³ CH ₃ CHO	0	0	0
13CH ₃ 13CHO	0	0	0
CH₃ČHO	100	100	100
¹³ CH ₃ CH ₂ OH	21	27	29
¹³ CH ₃ ¹³ CH ₂ OH	0	0	0
CH₃CH₂OH	79	73	71
CH ₃ COO ¹³ CH ₃	72	83	83
¹³ CH ₃ COO ¹³ CH ₃	2	1	1
¹³ CH ₃ ¹³ COO ¹³ CH ₃	8	9	6

CH_3CH_2CH_2OH, CH_3COCH_3, CH_3CH_2CH_2CH_2OH, and CH_3COOC_2H_5 fractions were not labelled with $^{13}\mathrm{C}$ during the reaction.

acetone, formed as a minor by-product in the CO- H_2 reaction, was labelled with ¹³C as ¹³CH₃COCH₃ and ¹³CH₃CO¹³CH₃ in almost equal mole %. This implies that the subsequent scrambling reaction proceeds between acyl and methyl species on the Rh–Ti/SiO₂ catalyst.

¹³C-Labelled CH₃OH (90% enrichment) was introduced by controlling its feed (0.5-1 mmol/h) onto a stationary-state 1 atm CO-H₂ reaction on Rh-Ti(1:1)/SiO₂ catalyst. Decomposition of methanol occurred negligibly in the CO-H₂ reaction at temperatures around 220 °C. The ¹³C compositions in each product fraction are shown in Table 2. Product ethanol was composed of labelled species e.g. ¹³CH₃CH₂OH in ca. 20% incorporation of the total ethanol formed. No incorporation of ¹³C-labelled methanol was found in any acetaldehyde, methane, or propanol fractions. Single ¹³C-labelling in a methyl acetate fraction is from the incorporation of ¹³CH₃OH in its methyl ester position. This is consistent with our previous results,^{2,4,5} suggesting that acyl and acetate species are accumulated on Rh-Mn and Rh-Ti catalysts in a CO-H₂ reaction, which are transformed as methyl acetate by the transient methanol feed. Tamaru et al.¹⁰ also suggested that

interfacial support oxygen atoms in Rh/SiO₂ catalyst are incorporated in C₂-oxygenate formation from C¹⁸O+H₂, indicating acetate formation, in which one oxygen atom is provided from the support. Consequently, the ¹³C-isotopic compositions of the C₂-oxygenate fractions examined using ¹³CH₃OH reveals there is a minor contribution from methanol homologation for C₂-oxygenates on the SiO₂-supported Rh– Ti catalyst, and also excludes any possibility of alcohol condensation.

In conclusion, as we have previously proposed,^{2.5} based on kinetic considerations, C₂-oxygenates such as ethanol and acetaldehyde are formed *via* the essential steps in the mechanism shown in Scheme 1; dissociation of CO to carbon and oxygen, hydrogenation of surface carbon to CH₃, followed by carbonylation. This mechanism is in agreement with our observed product array in ¹³C-labelling experiments and the existence of acyl species proposed on Rh–Mn, Rh–Ti, and Rh/SiO₂ by means of *in-situ* high pressure i.r. spectroscopic techniques.¹¹

This work was supported by a National Research Development Program of the Ministry of International Trade and Industry.

Received, 16th November 1984; Com. 700

References

- 1 M. M. Bhasin, W. J. Bartley, P. C. Ellgen, and T. P. Wilson, J. Catal., 1978, 54, 120.
- 2 M. Ichikawa, Bull. Chem. Soc. Jpn., 1978, 51, 2273; Chemtech., 1982, 674; M. Ichikawa and K. Shikakura, Stud. Surf. Sci. Catal., 1981, 7, 925.
- 3 P. C. Ellgen, W. J. Bartley, M. M. Bhasin, and T. P. Wilson, Adv. Chem. Ser., 1979, 178, 147.
- 4 M. Ichikawa, K. Sekizawa, K. Shikakura, and M. Kawai, J. Mol. Catal., 1982, 11, 167.
- 5 M. Ichikawa, T. Fukushima, and K. Shikakura, Proc. 8th Int. Congr. Catal., Berlin, 1984, II-69.
- 6 D. Foster, Adv. Organomet. Chem., 1979, 17, 255.
- 7 A. Takeuchi, J. R. Katzer, and G. C. A. Schuit, J. Catal., 1983,
 82, 477; W. M. H. Sachtler, Proc. 8th Int. Congr. Catal., Berlin, 1984, I-151.
- 8 A. Takeuchi and J. R. Katzer, J. Catal., 1983, **82**, 351; A. Takeuchi, J. R. Katzer, and R. W. Creclely, *ibid.*, 1983, **82**, 474.
- 9 A. Takeuchi and J. R. Katzer, J. Phys. Chem., 1981, 85, 937.
- 10 H. Orita, S. Naito, and K. Tamaru, J. Chem. Soc., Chem. Commun., 1984, 150.
- 11 H. Arakawa, T. Fukushima, M. Ichikawa, K. Takeuchi, T. Matsuzaki, and Y. Sugi, *Chem. Lett.*, 1985, in the press.