A New, High Yield Synthesis of 2-Deoxy-2-fluoro-p-glucose

Terushi Haradahira, Minoru Maeda, Yasunobu Kai, and Masaharu Kojima*

Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812, Japan

The reaction of 1,6-anhydro-3,4-di-*O*-benzyl-2-*O*-(trifluoromethanesulphonyl)-β-D-mannopyranose (4) with tetra-alkylammonium fluorides provides a rapid, high yield synthetic route to 2-deoxy-2-fluoro-D-glucose.

Considerable success has recently been achieved in the synthesis of 2-deoxy-2-fluoro-D-glucose (FDG), based on the fluoride ion displacement of suitably protected 2-O-(trifluoromethanesulphonyl)- β -D-mannopyranosides, $^{1--3}$ which, in radiosynthesis with ^{18}F , has in principle the advantage of utilizing all the available fluorine. However, a common side reaction is elimination of the sulphonyloxy group by reaction with the favourably disposed C-3 hydrogen. A higher yield procedure for the synthesis of FDG is still desirable. We have found that the side-reaction can be avoided by the use of the C-2 trifluoromethanesulphonate of 1,6-anhydro- β -D-mannopyranose as a substrate, which has a *trans*-diequatorial arrangement of the leaving group and the vicinal hydrogen.†

1,6-Anhydro-3,4-di-O-benzyl-2-O-(trifluoromethanesulphonyl)-β-D-mannopyranose (4), chosen as the most suitable precursor for a fluoride displacement, was prepared by the following sequence of reactions. Benzylation of 1,6-anhydro-2-O-(p-toluenesulphonyl)-β-D-mannopyranose (1)⁵ with benzyl bromide and silver oxide gave the 3,4-di-O-benzyl derivative (2), which was desulphonated with potassium hydroxide to (3). Conventional sulphonation of (3) with

The trifluoromethanesulphonate (4) was treated with tetran-butyl- and/or tetramethyl-ammonium fluoride in dry acetonitrile, acetone, or tetrahydrofuran (THF). The reactions were complete in 20 min at reflux temperature or even at room temperature, giving 1,6-anhydro-3,4-di-O-benzyl-2-deoxy-2-fluoro- β -D-glucopyranose (6) {syrup, $[\alpha]_D - 28^\circ$ }, after column chromatography on silica gel, in excellent yield as shown in Table 1; no elimination product was obtained. The use of the combination of caesium fluoride in N,N-dimethyl formamide (DMF) at higher temperature led to the extensive decomposition of (4). The structure of (6) was confirmed by elemental analysis and by mass and 1 H n.m.r. spectra.‡ Similar treatment of the trifluoromethanesulphonate (5) protected as its 3,4-di-O-methyl ether gave the corresponding (7) in excellent yield.

 \ddagger 1 H N.m.r. data: (4) (CDCl₃) δ 3.51 (1H, t, $J_{3.4}$, $J_{4.5}$ 1.7 Hz, 4-H), 3.78 (1H, dd, $J_{5,6exo}$ 5.9, $J_{6endo,6exo}$ 7.5 Hz, 6-Hexo), 3.95—4.05 (1H, m, 3-H), 4.25 (1H, dd, $J_{5,6endo}$ 1.2 Hz, 6-Hendo), 4.32—4.77 (5H, m, 5-H, PhCH₂O), 4.88 (1H, dd, $J_{1.2}$ 1.9, $J_{2.3}$ 5.5 Hz, 2-H), 5.53 (1H, br. s, 1-H), 7.19—7.43 (10H, m, aromatic). (6) (CDCl₃) δ 3.35 (1H, t, $J_{3.4}$, $J_{4.5}$ 1.4 Hz, 4-H), 3.62—3.86 (2H, m, 3-H, 6-Hexo), 3.91 (1H, dd, $J_{5.6endo}$ 1.2, $J_{6endo,6exo}$ 7.3 Hz, 6-Hendo), 4.35 (1H, mult. of d, $J_{2.F}$ 45 Hz, 2-H), 4.44—4.72 (5H, m, 5-H, PhCH₂O), 5.53 (1H, br. d, $J_{1.F}$ 4.9 Hz, 1-H), 7.18—7.46 (10H, m, aromatic).

trifluoromethanesulphonic anhydride in pyridine gave the required (4).‡

[†] The 1,6-anhydro- β -D-hexopyranoses exist in the ${}^{1}C_{4}(D)$ conformation of the pyranose with the $E_{a}{}^{2}$ (E_{0}) conformation of the 1,3-dioxolane ring, see ref. 4.

- $(\dot{\mathbf{6}})$ R = PhCH₂
- (7) R = Me

Table 1.

Florinating Compound agent Solvent			Temperature /°C	Time /min	Product (% Yield)
	U		reflux	20	,
(4)	Me ₄ NF	MeCN			(6) (91)
	Bu_4NF	MeCN	room	20	(6) (85)
	Bu_4NF	acetone	reflux	20	(6) (80)
	Bu_4NF	THF	reflux	20	(6) (82)
	CsF	DMF	120°C	30	decomp.
(5)	Me_4NF	MeCN	reflux	20	(7)(87)
` '	Bu ₄ NF	MeCN	room	20	(7) (90)

The cleavage of the anhydro bridge in 1,6-anhydrohexopyranoses with electronegative groups at C-2 proceeds with great difficulty. However, the direct conversion of (6) into FDG was achieved by heating with 50% (v/v) methanesulphonic acid at 120 °C for 30 min (70% yield). The FDG thus obtained had m.p., optical rotation, and ¹H n.m.r. spectral properties as reported.^{2,7} Thus FDG was obtained in 64% overall yield from (4).

The use of (4) as a precursor in the synthesis of FDG leads to a higher yielding and cleaner fluorination under extremely mild conditions than previously published procedures. It is also comparable to a method using the 2,3-cyclic sulphate of methyl 4,6-O-benzylidene-β-D-mannopyranoside as a substrate, reported by Tewson.⁸ The present method could be also adapted for the preparation of ¹⁸F-labelled FDG for medical imaging.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Received, 21st December 1984; Com. 1786

References

- S. Levy, E. Livni, D. Elmaleh, and W. Curatolo, J. Chem. Soc., Chem. Commun., 1982, 972; S. Levy, D. R. Elmaleh, and E. Livni, J. Nucl. Med., 1982, 23, 918.
- 2 T. Haradahira, M. Maeda, Y. Kai, H. Omae, and M. Kojima, Chem. Pharm. Bull., 1984, 32, 165.
- 3 A. Dessinges, A. Olesker, and G. Lukacs, *Carbohydr. Res.*, 1984, 126, C6.
- 4 M. Černý and J. Staněk, Jr., Adv. Carbohydr. Chem. Biochem., 1977, 34, 23.
- 5 G. O. Aspinall and G. Zweifel, J. Chem. Soc., 1957, 2271.
- 6 L. J. Carson, J. Org. Chem., 1965, 30, 3953; J. Pacák, Z. Točík, and M. Černý, Chem. Commun., 1969, 77.
- 7 J. Adamson, A. B. Foster, L. D. Hall, R. N. Johnson, and R. H. Hesse, *Carbohydr. Res.*, 1970, 15, 351; L. Phillips and V. Wray, *J. Chem. Soc. B*, 1971, 1618.
- 8 T. J. Tewson, J. Org. Chem., 1983, 48, 3507; J. Nucl. Med., 1983, 24, 718.