endo-Anomeric and exo-Anomeric Effects in 2-Substituted Tetrahydropyrans

Harold Booth* and Khedhair A. Khedhair

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.

Determinations by variable temperature ¹³C and/or ¹H n.m.r. spectroscopy of equilibrium constants for inversion of 2-substituted tetrahydropyrans and comparisons with substituted cyclohexanes have given 'anomeric effects $(\Delta\Delta H^{\circ})'$ of +2.12, +0.75, +0.61, and -0.33 kcal mol⁻¹ (1 cal = 4.184 J) for substituents Cl, OMe, OH, and NHMe respectively; this sequence confirms the importance of antiperiplanar n- σ^* stabilisation but supports the suggestion that *endo*-anomeric and *exo*-anomeric effects which occur in the same conformation are competitive.

Although the anomeric effect^{1,2} has generally¹⁻⁵ been evaluated as $(\Delta G^{\circ}_{1\rightarrow 2} - \Delta G^{\circ}_{3\rightarrow 4})$ there are advantages in using ΔH° values in order to eliminate temperature-dependent entropybased contributions. We now report 'anomeric effects $(\Delta \Delta H^{\circ})$ ' for substituents Cl, OMe, and OH and a 'reverse anomeric effect $(\Delta \Delta H^{\circ})$ ' for the substituent NHMe.

Equilibrium constants K for $(1 \rightleftharpoons 2)$ and $(3 \rightleftharpoons 4)$ were determined as indicated in footnotes to Table 1, which summarises the values of $\Delta H^{\circ}_{1 \rightarrow 2}$ and $\Delta S^{\circ}_{1 \rightarrow 2}$ obtained from

plots of ln K against T^{-1} . In enthalpy terms, only 2-chlorotetrahydropyran favours the axial conformation. The 'anomeric effects ($\Delta\Delta H^{\circ}$)' for each substituent were deduced from values of $\Delta H^{\circ}_{1\rightarrow 2}$ and $\Delta H^{\circ}_{3\rightarrow 4}$. It is realised that such anomeric effects inevitably include differences in steric effects as between cyclohexanes and tetrahydropyrans, differences which are difficult to evaluate.⁹ Nevertheless, the trend in $\Delta\Delta H^{\circ}$ values for Cl, OMe, OH, and NHMe supports the current view that a significant source of both anomeric and

Table 1. Thermodynamic parameters^a for (1 \rightleftharpoons 2) and (3 \rightleftharpoons 4) (ΔH° /kcal mol⁻¹; ΔS° /cal K⁻¹ mol⁻¹).

	(1≓2)		(3≓4)		Anomeric effect,
R	$\Delta H^{\circ}_{1 \rightarrow 2}$	$\Delta S^{\circ}_{1 \rightarrow 2}$	$\Delta H^{\circ}_{3 \rightarrow 4}$	$\Delta S^{\circ}_{3 \rightarrow 4}$	$\Delta\Delta H^{\circ}$
Cl	1.67 ^{b,d}	-1.69 ^{b,d}	-0.45 ⁱ	0.32 ⁱ	2.12
OMe	0.04 ^{c,e}	-2.5 ^{c,e}	-0.71 ⁱ	-0.42^{i}	0.75
ОН	-0.63 ^{c,f}	-2.5 ^{c,f}	-1.24 ^j	-1.21 ^j	0.61
NHMe	-2.11 ^{c,g}	-2.2 ^{c,g}	-1.78 ^{c,h}	-2.02 ^{c,h}	-0.33

^a This work, unless stated otherwise; 1 cal = 4.184 J. ^b Solvent CDCl₃. ^c Solvent CFCl₃-CDCl₃ (85:15 v/v). ^d From (5 \rightleftharpoons 6) using ¹H n.m.r. (253–325 K). ^e Ref. 6. ^f From (1 \rightleftharpoons 2) using ¹³C n.m.r. (169–172 K) and acid-catalysed (5 \rightleftharpoons 6) using ¹H n.m.r. (250, 270 K). ^g From (1 \rightleftharpoons 2) using ¹³C n.m.r. line-broadening⁸ (180–210 K), from (5 \rightleftharpoons 7) using ¹³C n.m.r. integration (174 K) and from (5 \rightleftharpoons 6 \thickapprox 7) using ¹H n.m.r. (250, 270 K), taking 1.95 kcal mol⁻¹ for $\Delta G^{\circ}(4\text{-Me})$.⁷ ^b From (3 \rightleftharpoons 4) using ¹³C n.m.r. integration (180 K) and ¹³C n.m.r. line-broadening (190–230 K). ⁱ Solvent CFCl₃.^{14 j} Solvent iso-octane.¹⁵

exo-anomeric¹⁰ effects is a stabilisation due to an antiperiplanar n- σ^* interaction of the heteroatom lone pair with the antibonding orbital of the C heteroatom bond.^{1,2,5} However, it is impossible at present to exclude contributions arising from dipole-dipole interactions and lone pair-lone pair repulsions.

The NHMe group has a small reverse anomeric effect, since 2-methylaminotetrahydropyran has a stronger preference than methylaminocyclohexane for the equatorial conformation. This finding recalls a similar conclusion drawn for aminomethanol from ab initio calculations,⁵ but is contrary to the prediction⁹ based on a linear correlation of ΔG° values in 2-substituted tetrahydropyrans with those in the related cyclohexanes. Franck's prediction relies on a value for $\Delta G^{\circ}_{1 \rightarrow 2}$ (NHMe) deduced from the work of Tesse, Glacet, and Couturier¹¹ who found that 2-methylamino-4methyltetrahydropyran contained 85% cis- and 15% transisomers at room temperature in CCl₄. It was apparently assumed by Franck that the trans-isomer (5=7) existed entirely in conformation (5), although Barbry et al.¹² had estimated the position of equilibrium in $(5 \rightleftharpoons 7)$ by measurement of proton band-widths for the mixture and for model compounds.

The pronounced change (~ 2 kcal mol⁻¹) in ΔH° when OMe is changed to NHMe is interesting and cannot be due entirely to the larger steric repulsions for axial NHMe as against axial OMe (cf. ~ 1 kcal mol⁻¹ difference for ΔH° in the cyclohexane case). It is noted that endo-anomeric (solid curved arrows) and exo-anomeric (broken curved arrows)

effects are in competition¹³ in the preferred rotamers (8),(9) of the axial conformations. At the same time the exo-anomeric effect in the most stable rotamers (10),(11) of the equatorial conformations do not suffer competition from an endoanomeric effect. Since the C-N bond is a weaker acceptor than the C-O bond, the *endo*-anomeric effect in (9) is weaker than in (8). Also, as nitrogen is a stronger donor than oxygen, the exo-anomeric effect in (11) is stronger than in (10). The consequence is a very strong preference for equatorial NHMe in 2-methylaminotetrahydropyran. The assumption that (12) is the dominant rotamer for the *cis*-isomer ($\mathbf{6}$; $\mathbf{R} = \mathbf{NHMe}$) is supported by the following n.m.r. coupling constants: (a) 12.3 Hz (±0.3 Hz), measured at 170–195 K for ${}^{3}J_{HH}$ (H–C₂–N– H), for which the expected values¹⁶ are 3-4 (dihedral angle $\Phi \sim 60^{\circ}$) or 11—13 Hz ($\Phi \sim 180^{\circ}$); (b) 3.67 Hz (± 0.15 Hz) for ${}^{3}J_{CC}$ (C_{3} - C_{2} -N- CH_{3}), for which the expected values^{17,18} are 0-1 ($\Phi \sim 60^{\circ}$) or 3-5 Hz ($\Phi \sim 180^{\circ}$); (c) 3.30 Hz (± 0.15 Hz) for ${}^{3}J_{HC}$ (*H*-C₂-N-CH₃), for which the expected values^{17,19,20} are 1.5-4.5 ($\Phi \sim 60^{\circ}$) or 6-8.5 Hz ($\Phi \sim 180^{\circ}$).

syn-Axial steric interactions are weaker for axial chlorine than for methoxy or methylamino, owing largely to the relatively long C-Cl bond. In addition, the exo-anomeric effect for chlorine is expected to be weak. On the other hand the powerful acceptor properties of the C-Cl bond ensure that the endo-anomeric effect is strong. Consequently, the equilibrium in 2-chlorotetrahydropyran is heavily biased towards the conformation with axial chlorine.

We thank R. U. Lemieux for encouragement and stimulating correspondence, and the University of Salah Al-deen, Iraq, for a scholarship to K. A. K.

Received, 19th November 1984; Com. 1627

References

- 1 A. J. Kirby, 'The Anomeric Effect and Related Stereoelectronic Effects at Öxygen,' Springer, Berlin, 1983. 2 P. Deslongchamps, 'Stereoelectronic Effects in Organic Chem-
- istry,' Pergamon, Oxford, 1983.
- 3 C. B. Anderson and D. T. Sepp, Tetrahedron, 1968, 24, 1707.
- 4 E. L. Eliel and C. A. Giza, J. Org. Chem., 1968, 33, 3754.
- 5 S. Wolfe, M-H. Whangbo, and D. J. Mitchell, Carbohydrate Res., 1979, 69, 1.
- 6 H. Booth, T. B. Grindley, and K. A. Khedhair, J. Chem. Soc., Chem. Commun., 1982, 1047.
- 7 E. L. Eliel, K. D. Hargrave, K. M. Pietrusiewicz, and M. Manoharan, J. Am. Chem. Soc., 1982, 104, 3635.
- 8 N. Okazawa and T. S. Sorensen, *Can. J. Chem.*, 1978, **56**, 2737; F. A. L. Anet and V. J. Basus, *J. Magn. Reson.*, 1978, **32**, 339.
- 9 R. W. Franck, Tetrahedron, 1983, 39, 3251.
- 10 R. U. Lemieux and S. Koto, Tetrahedron, 1974, 30, 1933.
- 11 J. Tesse, C. Glacet, and D. Couturier, C. R. Acad. Sci. Ser. C,
- 1975, 280, 1525 12 D. Barbry, D. Couturier, and G. Ricart, J. Chem. Soc., Perkin Trans. 2, 1982, 249.
- 13 The suggestion that endo-anomeric and exo-anomeric effects are in competition in (8) is due to R. U. Lemieux, personal communication, June 1983.
- 14 D. Hofner, S. A. Lesko, and G. Binsch, Org. Magn. Reson., 1978, 11, 179.
- 15 T. Reisse, J. C. Celotti, D. Zimmermann, and G. Chiurdoglu, Tetrahedron Lett., 1964, 2145.
- 16 Cf. H. Booth and R. U. Lemieux, Can. J. Chem., 1971, 49, 777.
- 17 J. L. Marshall, 'Carbon-Carbon and Carbon-Proton NMR Couplings,' Verlag Chemie Internat., Florida, 1983.
- 18 P. E. Hansen, Annu. Rep. NMR Spectrosc., Sect. A, 1981, 11, 66.
- 19 P. E. Hansen, Prog. Nucl. Magn. Reson. Spectrosc., 1981, 14, 175.
- 20 A. H. Haines and M. S. Shandiz, J. Chem. Soc., Perkin Trans. 1, 1981, 1671.