475

## A Comparison of Nickel- and Platinum-catalysed Methanation, using Transient-kinetic Methods

## C.-H. Yang, Y. Soong and P. Biloen\*

Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.

Transient-kinetic experiments reveal that the surface intermediates on platinum exhibit lifetimes and abundances which are two orders of magnitude lower than on nickel.

On abruptly changing the flow of  ${}^{12}\text{CO}-\text{H}_2$  over nickel or platinum to a flow of  ${}^{13}\text{CO}-\text{H}_2$  the system responds by changing its production from  ${}^{12}\text{CH}_4$  to  ${}^{13}\text{CH}_4$ . Figure 1 and Figure 2 show the responses over nickel and platinum respectively. A noteworthy feature is that with nickel the production of  ${}^{12}\text{CH}_4$  in the  ${}^{13}\text{CO}-\text{H}_2$  atmosphere continues for some 100 s, whereas with platinum it ceases immediately.

With regard to the analysis of transient responses we note that the continued production of  ${}^{12}CH_4$  in the  ${}^{13}CO-H_2$ atmosphere (Figure 1) is derived from  ${}^{12}C$ -containing surface intermediates.<sup>1,2</sup> The integrated production corresponds to the total number of intermediates, and it is represented by the area bounded by the curves for the  ${}^{12}CO$  and the  ${}^{12}CH_4$ transients. A further analysis<sup>3</sup> reveals that this area represents only those surface intermediates which do not convert back into  ${}^{12}CO$ , *i.e.*, the intermediates located 'downstream' of the first unidirectional step in the reaction pathway. On the assumption that there is one predominantly abundant surface Table 1. Methanation over Ni and Pt; data on catalysts, rates, and transient responses.

| 60% w Ni–SiO <sub>2</sub> | 2% w Pt–TiO <sub>2</sub> b                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $1.7 \times 10^{-7}$      | $1.4 	imes 10^{-8}$                                                                                                                  |
| 0.052                     | 0.24                                                                                                                                 |
| $3.2 \times 10^{-4}$      | $5.8 \times 10^{-4}$                                                                                                                 |
| 91                        | ≤2 <sup>d</sup>                                                                                                                      |
| $3 \times 10^{-2}$        | ≤1 × 10 <sup>-3 d</sup>                                                                                                              |
|                           | $\begin{array}{c} 60\% \text{w Ni-SiO}_2 \\ 1.7 \times 10^{-7} \\ 0.052 \\ 3.2 \times 10^{-4} \\ 91 \\ 3 \times 10^{-2} \end{array}$ |

<sup>a</sup> Reaction conditions: H<sub>2</sub>/CO = 3; 1 bar total pressure; T = 225 °C;  $F(H_2 + CO) = 2.4$  nl h<sup>-1</sup>; catalyst 0.61 g (Ni–SiO<sub>2</sub>) or 0.91 g (Pt–TiO<sub>2</sub>). <sup>b</sup> Reduced at 225 °C; *i.e.*, not suffering from TiO<sub>2</sub>-induced suppression of CO chemisorption. <sup>c</sup> As measured from *in situ* <sup>12</sup>CO–<sup>13</sup>CO exchange at 100 °C, assuming a stocheiometry CO<sub>ad</sub>/Ni(Pt) = 1. Refs. 3 and 4. <sup>d</sup> The upper limit for  $\tau$  and  $\theta$  derives, in the case of platinum, entirely from the accuracy of the area measurement:  $\tau = 0 \pm 2$  s at 95% confidence interval (*cf.* Figure 2).



**Figure 1.**  ${}^{12}CH_4$  response when switching from  ${}^{12}CO-H_2$  to  ${}^{13}CO-H_2$  over nickel. The production of  ${}^{12}CH_4$  in the  ${}^{13}CO-H_2$  atmosphere is derived from  ${}^{12}C$ -containing surface intermediates and continues for approximately 100 s.



**Figure 2.**  ${}^{12}CH_4$  response when switching from  ${}^{12}CO-H_2$  to  ${}^{13}CO-H_2$  over platinum. In the  ${}^{13}CO-H_2$  atmosphere the production of  ${}^{12}CH_4$  ceases immediately.

intermediate, the time constant (*i.e.* time required to attain  $e^{-1}$  of original value) of the  ${}^{12}CH_4$  decay curve reflects the lifetime,  $\tau$ , of that 'downstream' intermediate.<sup>3</sup> The very fact that we can observe coverages ( $\theta$ ) and lifetimes [ $k^{-1} = \tau$  (s)] in these experiments is due to their transient-kinetic nature. We can make these observations at, essentially, steady state

 $(\theta_{12} + \theta_{13} = \text{constant}; \tau = \text{constant})$  since the displacement of <sup>12</sup>CO is by a species with identical chemical behaviour, *i.e.*, <sup>13</sup>CO. The decay of <sup>12</sup>CH<sub>4</sub> is being mirror-imaged by an increase in <sup>13</sup>CH<sub>4</sub> (not shown in Figures 1 and 2), and the total <sup>12</sup>CH<sub>4</sub> + <sup>13</sup>CH<sub>4</sub> production is constant.

Inspection of Figure 1 confirms earlier observations<sup>1,2</sup> that with nickel the lifetime of the 'downstream' intermediates is of the order of 100 s. With platinum (Figure 2) the lifetime is below the detection limit, *i.e.*, < 2 s. Table 1 shows further comparison of the two metals. At a *comparable* turnover frequency (TOF), approximated by<sup>2,3</sup> equation (1), the  $TOF = \theta/\tau$  (1)

surface intermediates on platinum are much less abundant  $(\theta_{Pt} \ll \theta_{Ni})$  and much more reactive  $(\tau_{Pt} \ll \tau_{Ni})$ . A mechanistic interpretation of this finding will be given later.<sup>4</sup>

We acknowledge support of this work by the U.S. Department of Energy and by the Exxon Education Foundation.

Received, 24th October 1984; Com. 1427

## References

- 1 J. Happel, J. Suzuki, P. Kokayeff, and V. Fthenakis, J. Catal., 1980, 65, 59.
- 2 P. Biloen, J. N. Helle, F. G. A. van den Berg, and W. M. H. Sachtler, J. Catal., 1983, 81, 450.
- 3 C.-H. Yang, Y. Soong, and P. Biloen, Proceedings of the 8th International Congress on Catalysis, Berlin, 1984, Vol. II, p. 3.
- 4 C.-H. Yang, Y. Soong, and P. Biloen, J. Catal., submitted.