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Electrocatalytic reduction of nitrite to ammonia has been demonstrated using a water-soluble iron porphyrin as 
catalyst. 

The stoicheiometric or near-stoicheiometric reduction of 
co-ordinated nitrite or nitrosyl to ammonia has been observed 
in complexes of Fe, Ru, and 0s'-3 and a mechanism has been 
proposed based on a series of one-electron reductions of the 
corresponding nitrosyl complexes.3 Recently, catalytic reduc- 
tion of NO has been reported using certain iron c~mplexes .~  
The naturally occurring enzyme nitrite reductase,S which 
contains an iron isobacteriochlorin,6 achieves this trans- 
formation catalytically, and we find that the water soluble iron 
porphyrin Fe"'(TPPS)3- .3Na+. 12H207 [H2TPPS4- = tetra- 
anionic form of meso-tetrakisb-sulphonatophenyl)porphine] 
acts as an effective electrocatalyst for the reduction of nitrite 
to ammonia. 

Using 0.5-1.0 M phosphate buffer, - 0.1 M NO2- in the pH 
range 6.5-7.4, electroreduction at -0.9 V (vs. saturated 
calomel electrode) gives NH3 (by g.c.) with up to 17 turnovers 
of the porphyrin complex (moles of NH3 formed/moles of 
catalyst) with current efficiencies of 4 6 7 2 % .  Under these 
conditions the current background in the absence of catalyst is 
negligible. Dinitrogen is also obtained as a minor product but 
neither NH20H nor N2H4 was detected. To date, we have 
been unable to account for the remaining reductive equi- 
valents, but it is interesting that spectral studies show that the 
catalyst is >85% unchanged after 6-7 turnovers. 

The mechanism of reduction has been investigated by cyclic 
voltammetry and differential pulse polarography using acti- 
vated and unactivated carbon electrodes.8 In the absence of 
nitrite, but with 0.1 M buffer and 0 . 6 ~  Na2S04 added, a pH 
independent (pH < 7) FeIVFeII wave appears at 
Ei = -0.23 V. The added Na2S04 improves the reversibility 
of the electrode process but promotes formation of the p-0x0 
dimer, [{FeIII(TPPS)}20]8-, at pH > 4.0. On addition of 
nitrite, the corresponding nitrosyl complex appears via two 
pathways. In acidic solutions (pH < 3.0) NO is generated by 
disproportionation of HONO (3N02- + 2H+ --+ N03- 
+ 2N0 + H20)  and then undergoes a reaction with the FeI" 
porphyrin to give the nitrosyl complex, [Fe"I(TPPS)(H20)]3- 
+ *NO -+ [Fe"(TPPS)(N0+)]3-. The nitrosyl complex is 
spectrally similar [A,,,, (visible region) 536 nm] to that 
generated when Fe*I(TPP)(NO) (TPP2- = dianion of meso- 
tetraphenylporphine) is oxidized in PhCN at + 0.75 V 
(A,,,, = 539 nm).9 At pH > 3.0 with 10 equiv. of NOz-, and 
no Na2S04, [FeII1(TPPS)]3- is the dominant species in 
solution, probably as the axially ligated mono- or di-aquo ion. 
However, electrochemical reduction of Fe"1 to 
[Fe"(TPPS)]4- (past -0.23 V) results in the rapid (f4 < 1 s) 
appearance of the reduced nitrosyl complex, [FeII(TPPS)- 
(NO)]'+, presumably via [FeIl(TPPS)]4- + NOz- 
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(pH > 2.6) FeILNO' + e- F FeILNO- 
(2.6 > pH > 2.1) FeIJ-NO* + e- + 1H+ e FeILNHO 
(2.1 > pH > 1.4) FeILNO- + e- + 2H+ e FeIJ-NH20 

(pH < 1.4) FeILNOH + e- + 1H+ S Fe*J-NH20 
(or FeVEN) 

(or FeVzN) 

Scheme 1 

+ 2H+ + e- -+ [Fe"(TPPS)(N0)]4- + H 2 0 ,  by analogy 
with the known acid-base, nitrosyl-nitrite chemistry for 
polypyridine complexes of Ru1O and Os11 and for the 
nitroprusside ion, [Fe(CN),N0]2-. 12 

For the nitrosyl complex, a pH independent, somewhat 
irreversible electrode process is observed at - + 0.35 V for 
the couple, [Fe"(TPPS)(N0+)]3- + e- -+ [Fe"(TPPS)- 
(NO*)]4-. For the TPP complex, the potential for the 
analogous couple occurs at + 0.75 V in PhCN.9 A second 
NO-based reduction is observed in the region -0.4 to -0.7 V 
for the couple [FeII(TPPS)(NO*)]4- + e- -+ [Fe"(TPPS)- 
(NO-)]5- (Et  - -0.88 V for the analogous TPP couple in 
PhCN)9 which shows a complex dependence on pH in acidic 
solutions. Using differential pulse techniques, the observed 
variations in peak potentials (Ep) with pH in the presence of 
0 . 6 ~  Na2S04 are consistent with the electrode processes in 
Scheme 1 for the TPPS system. It should be noted that direct 
evidence for intermediates like MILNO and MILNHO has 
been obtained for polypyridine complexes of Ru and Os.3b.c 

From pH 4 to 7 the subsequent steps following the second 
reduction of the bound nitrosyl (Fe'LNO- + FeILNO-) are 
relatively slow. At an activated carbon electrode between pH 
3.1 and 3.6, a broad, featureless, apparently multi-electron, 
multi-proton process is observed in the range -0.55 to 
-1.0 V. Peak currents in this potential region are strongly 
enhanced in more acidic solution. Reduction into the multi- 
electron wave apparently leads to the further direct reduction 
to ammonia, FeIJ-NO- + 4e- + 5H+ + Fe1LNH3 + H20, 
without the build-up of further intermediates since, in contrast 

to polypyridine complexes af R u , ~  reverse scan gives no 
evidence for additional intermediates. The advantage of the 
iron porphyrin complex as a catalyst is that once the reduction 
to NH3 is complete, substitution at the relatively labile axial 
position of the porphyrin complex allows for facile incorpora- 
tion of an additional nitrosyl group thus completing the 
catalytic cycle. The polypyridine complexes of Ru and 0 s  are 
substitution inert and the newly formed NH3 group remains 
firmly bound. 
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