The Role of Bivalent Tin Compounds in Platinum Co-ordination Chemistry; *X*-Ray Structures of $[Pt{Sn(NR'_2)_2}_3]$, trans- $[(Pt{(\mu-Cl)}(PEt_3){SnCl(NR'_2)_2})_2]$, and $(SnCIR_2)_2$ $[R = CH(SiMe_3)_2, R' = Sime_3]$ [†]

Tala1 A. K. Al-Allaf, Colin Eaborn, Peter B. Hitchcock, Michael F. Lappet?, and Alan Pidcock *School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.*

Bivalent tin compounds $SnX₂$ behave in one of three ways towards platinum substrates: (a) as neutral ligands, (b) as co-ordinatively unsaturated fragments by inserting into Pt-CI bonds, and (c) as reducing agents; these features are illustrated, *inter alia,* by X-ray data on the three title compounds.

 $Tin(II)$ chloride has a significant place as a cocatalyst for alkene transformations in platinum chemistry, *e.g.,* with $H_2[PtCl_6]$ or $K_2[PtCl_4]$ in hydrogenation¹ or $[Pt(CO)Cl(H)(PPh₃)₂]$ in hydroformylation;² this is generally attributed to the creation of the labile $-SnCl₃$ ligand. Numerous Pt^{II} complexes of this type have been identified.³

Recently a number of heavy main group $4b$ metal(II) carbene analogues : MX_2 ($M = Ge$, Sn, or Pb) have become available. They may prove to have an extensive transitionmetal chemistry. Here we present some data on the structural chemistry of compounds obtained from $SnR₂$ or $Sn(NR'₂)₂$ $[R = \dot{CH}(SiMe_3)_2, R' = SiMe_3]$ and certain Pt⁰ or Pt^{II} complexes. These results illustrate that : $SnX₂$ may function as a ligand (a tertiary phosphine analogue), a source of $-SnX_2Cl$ by insertion into a Pt-C1 bond, or a reducing agent which is oxidised to $(SnX_2Cl)_2$; for background literature see ref. 3.

Of particular interest is the yellow homoleptic, three-coordinate Pt⁰ complex $[Pt{Sn(NR'_{2})_2}_3]$, (1), Figure 1, obtained from $[Pt(cod)_2]$ (cod = cyclo-octa-1,5-diene) and an excess of $Sn(NR'_{2})_{2}$ in toluene.

An alternative mode of Pt-Sn bonding is found in the yellow

Figure 1. $[Pt{Sn(NR'_{2})_{2}}_{3}]$, (1). The Pt, Sn, and N atoms are all trigonally planar co-ordinated. The SnN2 planes are at *ca. 85"* to the PtSn₃ plane. Selected dimensions: Pt-Sn(1) 2.470(6), Pt-Sn(2) 2.487(6), Pt-Sn(3) 2.504(5), Sn-N (av.) 2.1(2), N-Si (av.) 1.8(2) Å; **Sn(** l)-Pt-Sn(2) 120.0(2), Sn(l)-Pt-Sn(3) 119.8(2), Sn(2)-Pt-Sn(3) $120.2(2)$ °.

t No reprints available.

 $trans$ -[(Pt(μ -Cl)(PEt₃){Sn(NR'₂)₂Cl})₂], (2), Figure 2, prepared from $\left[\frac{\text{PtCl}(\mu-\text{Cl})(\text{PEt}_3)}{2}\right]$ and an excess of Sn $\left(\text{NR'}_{2}\right)_2$ in n-hexane.³ This complex (30%) is now found to coexist with the cis-isomer, **(3)**, (70%) when the freshly mixed n- C_6H_{14} solution is freed from solvent and the residue dissolved in C_6D_6 ; heating the mixture causes the isomerisation (3) \rightarrow (2). The compounds are readily distinguished by $31P$ n.m.r. spectroscopy [data for (3) in parentheses]: $\delta - 133.7 (-132.5)$ p.p.m.; $1J(195Pt^{31}P)$ 3 960 (4 109) Hz, $2J(119Sn^{31}P)$ 170 (185.5) Hz.

$$
[Pt\{Sn(NR'_{2})_{2}\}_{3}]
$$
\n(1)
\n
$$
[(Pt(\mu-CI)(PEt_{3})\{Sn(NR'_{2})_{2}Cl\})_{2}]
$$
\n(2), trans
\n(3), cis

 $[(Pt(\mu-CI)(PEt_3)\{SnR_2Cl\})_2]$ (4) , trans

$$
\begin{array}{c} [\text{PtCl}(\text{PEt}_3)(\text{SnR}_2)(\text{SnR}_2\text{Cl})] \\ (5), \text{cis} \\ (6), \text{trans} \end{array}
$$

$$
\begin{array}{c} [{\rm SnClR}_2)_2] \\ {(7)}\end{array}
$$

Treatment of the same Pt^{II} substrate $[\{PtCl(\mu-Cl)(PEt_3)\}_2]$ with an excess of SnR_2 yields (4), the SnR_2Cl analogue of (2), as well as $cis(-5)^4$ and $trans-(6)$ $[PtCl(PEt₃)(SnR₂Cl)]$ (the designations cis and *trans* refer to the relative disposition **of** the Sn-containing ligands); a by-product was crystalline [(SnCIR2)2], **(7),** Figure 3. 31P N.m.r. data for **(4),** *(9,* and *(6)* are: δ -133.5, -125.0, and -127.6 p.p.m.; $1J(195Pt^{31}P)$ 4304, 2490, and 4497 Hz; $2J(119Sn^{31}P)$ 80, obscured, and 129.4 $(SnR₂$ or SnR₂Cl) and 34.3 (SnR₂Cl or SnR₂) Hz. Compound (7) is notable also for being the dichloro adduct of $R_2Sn = SnR_2$ [which has a SnSn bond length of $2.764(2)$ Å].⁴

The X-ray structures of complexes **(l), (2),** and **(7)** are

Figure 2. *trans-*[$(Pt(\mu$ -Cl $)(PEt_3)\{Sn(NR'_2)_{2}Cl\})_2$], (2). Selected dimensions: Pt-Sn 2.534(1), Pt-CI(1) 2.430(3), Pt-Cl(1') 2.370(3), Pt-P 2.202(3), Sn-Cl(2) 2.401(3), Sn-N(l) 2.066(8), Sn-N(2) 2.088(8) Å; P-Pt-Sn $94.8(1)$ °.

illustrated in Figures $1-3$ and crystal data and refinement parameters are in Table 1. There are X -ray data in the literature for a number of transition-metal complexes having the $-SnCl₃$ ligand or a simple analogue, but only four for SnR_2 or $Sn(NR'_2)_2$ derived compounds: $[Cr(CO)_5(SnR_2)]$,⁴
 $[Os_3SnH_2(CO)_{10}R_2]$,⁵ $[Os_3Sn(\mu-H)(\mu-RC(OS)=O(SN))$ - $[Os_3Sn(\mu-H){\mu-RC(OS)=O(SN)}$ $(CO)_9R$, ϵ and $[Os_3Sn(CO)_9{\mu_2,\eta^1-C}$ $(CO_2Me)CH_2C=O(Os)$ -OMe R_2 . The complex $[PtH(PEt_3)(SnR''_2OMe)_2(SnR''_2) (SnR^{\prime\prime})$] $(R^{\prime\prime} = p\text{-}C_6H_4Me)$ has a base-stabilised $SnR^{\prime\prime}$ ₂ ligand,⁷ while $[Pt(\overline{PPh_3})_2\{Sn(\eta^2\text{-}acac)_2\}_2]$ and $[Pt_2\{\mu_2\text{-}Sn(\eta^2\text{-}caca)\}_2]$

Figure 3. [(SnClR₂)₂], (7). The dimer, which has no crystallographic symmetry, is staggered about the Sn-Sn bond with the C1 atoms *tram,* and has a long \overline{Sn} -Sn bond of 2.844(1) Å; and $\langle Sn-Cl \rangle$ 2.365(4), \langle Sn-C $>$ 2.19(1) Å, C-Sn-C 109.2°.

Table 1. Crystal data and refinement parameters for compounds **(l), (2),** and **(7).a**

Complex	(1)	(2)	(7)
M	1513.5	1647.3	945.9
Crystal system	Triclinic	Monoclinic	Triclinic
a/Ă	13.927(17)	11.501(1)	9.093(2)
b/Å	13.823(5)	17.975(2)	12.017(3)
c/Å	19.545(9)	17.244(1)	23.869(4)
$\alpha/^\circ$	78.78(3)		98.32(1)
β /°	86.99(6)	105.20(1)	90.08(1)
$\gamma/^\circ$	74.36(6)		110.58(1)
U/\AA ³	3556.4	3440.1	2412.2
Ζ	2	2	2
D_c /g cm ⁻³	1.41	1.59	1.30
F(000)	1524	1624	980
Space group	$\overline{P1}$	P2 ₁ /c	ΡĪ
$\mu(Mo-K_{\alpha})/cm^{-1.6}$	33.3	53.5	13.6
2θ limits/ \degree	15	25	20
Reflections used 1395		3722	2943
in refinement			
$I > \sigma(I)$			
R	0.13	0.07	0.06
R'	0.13	0.08	0.07

^aThe atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Rd., Cambridge **CB2** 1EW. Any request should be accompanied by the full literature citation for this communication. $\phi \lambda (M_0 - K_\alpha) = 0.71069 \text{ Å}.$

 $\text{acac})_2$, $\{PPh_3\}_2$ ⁸ (Hacac = acetylacetone) are Pt⁰-Sn^{II} com**plexes having different co-ordination numbers for Pt and Sn (4 and 5, respectively) than complex (1).**

We thank A. J. Thorne for samples of SnR_2 and $\text{Sn}(\text{NR'}_2)_2$, **Johnson Matthey PLC for a loan of Pt, the S.E.R.C. for support, and the University of Mosul for study leave** to T. **A. K. A.**

Received, 31st December 1984; Corn. 1802

References

- 1 *Cf.,* B. R. James, 'Homogeneous Hydrogenation,' Wiley, New York, 1974, p. 327.
- 2 Cf., 'New Syntheses with Carbon Monoxide,' ed. J. Falbe, Springer, Berlin, 1980, pp. **44,** 45.
- 3 *Cf.,* M. F. Lappert and P. P. Power, J. *Chem. SOC., Dalton Trans.,* 1985, 51.
- 4 J. D. Cotton, **P.** J. Davidson, and M. F. Lappert, J. *Chem.* SOC., *Dalton Trans.,* 1976, 2275; *J.* D. Cotton, P. J. Davidson, M. F. Lappert, J. D. Donaldson, and J. Silver, *ibid.,* p. 2286; D. **E.** Goldberg, D. H. Harris, M. F. Lappert, and **K.** M. Thomas, *J. Chem. SOC., Chem. Commun.,* 1976,261.
- *5* C. **J.** Cardin, D. J. Cardin, H. E. Parge, and J. M. Power, J. *Chem. SOC., Chem. Commun.,* 1984,609.
- 6 C. J. Cardin, D. J. Cardin, J. M. Power, and M. B. Hursthouse, J. *Am. Chem.* **SOC.,** 1985, **107,** 505.
- 7 J. F. Almeida, K. R. Dixon, C. Eaborn, P. B. Hitchock, A. Pidcock, and J. Vinaixa, J. *Chem. SOC., Chem. Commun.,* 1982, 1315.
- 8 G. W. Bushnell, D. T. Eadie, A. Pidcock, **A.** R. Sam, R. D. Holmes-Smith, **S.** R. Stobart, E. T. Brennan, and T. **S.** Cameron, J. *Am. Chem. SOC.,* 1982, **104,** 5837.