Diazoimine-Triazole Equilibrium in Fused 1,2,3-Triazolo[1,5=a]pyrimidines

Gerrit L'abbe,* Franqoise Godts, and Suzanne Toppet

Department of Chemistry, University of Leuven, Celestijnenlaan ZOOF, B-3030 Heverlee, Belgium

The elusive diazo isomers (2) of 1,2,3-triazolo[1,5-a]pyrimidines (1) can be stabilized **by** triazole fusion of the **pyri** m id i ne **r** i **ng** .

1,2,3-Triazolo^{[1,5-a]pyrimidines can thermally equilibrate} between two isomeric structures **(1)** and **(3)** via the intermediacy of an open-chain diazo compound **(2)** (the so-called Dimroth rearrangement).¹ In all cases studied so far, the equilibria favour the bicyclic structures **(1)** and **(3),1,2** and the elevated temperature. **¹** diazo form **(2)** has only been detected once and then at an

or to thiophene,⁴ the equilibrium is shifted towards the angular structure **(1).** This is due to a destabilizing effect of the ortho-quinoid arrangement in the linear structure **(3).** We now report that the diazo form **(2)** can become the predominant isomer of the equilibrium when the ring fusion at **R1** and **R2** is performed with a π -deficient aromatic heterocycle, such as a v-triazole. Thus, *(5)* can undergo effectively ring opening to *(6)* and the equilibrium depends largely on the X-substituent. When the pyrimidine ring is fused at **R1** and **R2** to benzene3

The triazolopyrimidines **(5)** and/or **(6)** were prepared from **5-azido-l-benzyl-4-cyano-l,2,3-triazole (4)** and active methylene compounds (phenylacetonitrile, malononitrile, ethyl

a;
$$
X = Ph
$$

\n**b**; $X = CN$
\n**c**; $X = CO_2Et$
\n**d**; $X = H$

cyanoacetate, and cyanoacetic acid) in the presence of an alkoxide, following the procedure of Westerlund.^{4†}

When $X = Ph$ or CN (examples a,b), the compounds exist in the ring-closed tricyclic structure *(5)* both in the solid state and in (CH_3) ₂SO solution (i.r. and n.m.r. spectroscopic evidence). However, the i.r. spectrum (KBr) of **(5b)** discloses a weak diazo absorption at 2100 cm-1 which is indicative of $(6b)$.

When $X = CO₂Et$ (example **c**), the i.r. spectrum (KBr) has a strong absorption at 2120 cm-1 attributable to **(6c).** In the 1H n.m.r. spectrum in $(CD_3)_2$ SO solution at room temperature, the absorptions of the ethyl protons (at δ 1.30 and 4.30) are broadened, and those of the benzyl methylene (at δ 5.66 and 5.76) and amine protons (at δ 8.25 and 10.45) are doubled. Coalescence of the benzyl methylene absorptions occurs at about 40 \degree C, and all absorptions are sharp at 90 \degree C, corre-

 \dagger The new compounds were fully characterized by i.r., ¹H n.m.r., ¹³C n.m.r., and mass spectroscopy and high-resolution exact mass measurements.

sponding to a rapid interconversion of the two isomers on the n.m.r. time scale. The ratio of **(5c)** : **(6c)** at room temperature is estimated at $65:35\%$. In CD₃CN solution, the concentration of **(6c)** (80%) exceeds that of **(5c),** and this is further increased in (CD3)2C0 solution *(ca.* 93%). On cooling the acetone solution, the amount of **(6c)** decreases to about *50%* at -50 °C. The diazo form (6c) is the only isomer present in CDCl₃ solution at room temperature, but at -40 °C a small amount *(ca.* 10%) of **(5c) is** present.

Finally, when $X = H$ (example **d**), only the diazo isomer **(6d)** is observed in the i.r. (KBr) and n.m.r. $[(CD_3)_2SO]$ spectra. For instance, the compound exhibits a diagnostic diazo proton resonance at δ 5.60 in the ¹H n.m.r. spectrum, and a diazo carbon resonance at δ 52.17 (d, V_{CH} 200.9 Hz) in the 13C n.m.r. spectrum. The ring carbon atoms at positions 5 and 7 of $(6d)$ are found at δ 162.7 and 155.5 respectively, which have shifted downfield compared to those of **(5a)** (at 6 143.3 and 145.9 respectively).

In conclusion, the equilibrium concentration of the diazo form **(6)** increases in the following order of the X-substituent: Ph \leq CN \leq CO₂Et \leq H. The solvent also influences the equilibrium position, stabilizing the diazo form **(6)** in nonpolar solvents; *i.e.* $(CD_3)_2SO < CD_3CN < (CD_3)_2CO <$ CDC13. Upon cooling, the equilibrium shifts towards the ring-closed form *(5).*

We thank the N.F.W.O. (Belgium) for a fellowship (to F. G.) and the University of Leuven and the Ministerie voor Wetenschapsbeleid for financial support.

Received, 2nd January 1985; Corn. 013

References

- 1 G. Tennant and R. J. **S.** Vevers, J. *Chem. SOC., Chem. Commun.,* 1974, 671.
- 2 T. Novinson, P. Dea, and T. Okabe, J. *Org. Chem.,* 1976,41,385. Other v-triazoloazines also exist as the bicyclic structure; see, for instance, **M.** Mackie and G. Tennant, *Tetrahedron Lett.,* 1972, 4719; M. Regitz, *Chem. Ber.,* 1966,99,2918; Y. Tamura, J-H. Kim, **Y.** Miki, H. Hayashi, andM. Ikeda, J. *Heterocycl. Chem.,* 1975,12, 481; *G.* Maury, J-P. Paugam, and R. Paugam, *ibid.,* 1978.15,1041; G. Maury, D. Meziane, D. Srairi, J-P. Paugam, and R. Paugam, *Bull. SOC. Chim. Belg.,* 1982, 91, 153.
- 3 G. Tennant, J. *Chem. SOC.* C, 1966,2290; D. R. Sutherland and G. Tennant, *Chem. Cornmun.,* 1969, 423; J. *Chem. SOC., Perkin Trans. 1,* 1974, 534.
- **4** C. Westerlund, J. *Heterocycl. Chem.,* 1980, 17, 1765.