Photoreduction of Bis(acetylacetonato)nickel(ii) Sensitized by Triplet State Ketones

Yuan L. Chow and Gonzalo E. Buono-Core

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Aromatic ketones with high triplet state energy sensitized the photoreduction of bis(acetylacetonato)nickel(ii), $Ni(acac)₂$, to give transient Ni¹ complexes which decomposed to Ni⁰ complexes in the dark.

Triplet state aromatic ketones and hydrocarbons are known to be efficiently quenched by a variety of metal complexes, as shown by flash excitation studies. **1-5** We have found that only certain high triplet energy ketones, $e.g.,$ xanthen-9-one, benzophenone, or acetophenone, can sensitize the photoreduction of bis(acetylacetonato)nickel(II), Ni(acac)₂, to Ni^I

complexes in H-atom donating solvents such as alcohols, tetrahydrofuran, and toluene. Fluoren-9-one, Z-acetonaphthone, p-methoxyacetophenone, and phenanthrene, while their triplet signals were efficiently quenched, failed to sensitize the photoreduction.

The dihydrate of $Ni (acac)_2$ utilized in this investigation has a

Figure 1. The e.s.r. signals recorded every 30 s following irradiation of $Ni(\text{acal})_2$ (2 × 10⁻² M) and benzophenone (10⁻¹ M) in tetrahydrofuran at 22 °C; g-value 2.186, $\Delta H_{\rm pp} = 46$ G (1G = 10⁻⁴ T).

Figure 2. The decay of the e.s.r. signal of Figure 1, recorded at 29 *"C* at **1** min intervals.

high-spin octahedral configuration and exhibits λ_{max} 295--300 nm with shoulders at 255 and 312 nm.6 Benzophenone (or xanthen-9-one) sensitized photolysis of $Ni (acac)_2$ in methanol under nitrogen (Pyrex filter, *hv* > 300 nm) gave metallic nickel, acetylacetone (75%), and formaldehyde (65%) efficiently; sensitizers were not consumed. Acetaldehyde, acetone, and 1,2-diphenylethane were the oxidation products when ethanol, propan-2-01, and toluene were used as solvents, respectively; in benzene and acetonitrile, no photoreduction occurred although triplet state ketones were totally quenched.

Figure 3. The e.s.r. signals recorded at -150 °C under similar irradiation conditions as in Figure 1; the spectra were taken at 10 $^{\circ}$ C increments up to -100 °C.

Direct irradiation of $Ni (acac)₂$ through a Corex or Pyrex filter caused no photoreduction.⁷ The photoreduction to the $Ni⁰$ state was confirmed by the isolation of $Ni[P(OPh)₃]_4$, $Ni[1,2$ bis(diphenylphosphino)ethane]₂, and Ni(Ph₃P)₄8 from photolyses in the presence of appropriate ligands. A similar photoreduction of $Ni (acac)$, under carbon monoxide purging apparently gave $Ni(CO)_4$, which could be trapped with phosphines as $Ni(CO)_2(Ph_3P)_2$ or $Ni(CO)_2[P(Bu^n)_3]_2.^9$

E.s.r. monitoring of the sensitized photoreduction exhibited an isotropic signal due to the transient Ni^I complex with a g-value of 2.186 $(\Delta H_{\rm pp} = 46 \text{ G})$ which built up to reach a photostationary state (Figure 1). The decay of the transient signal in the dark at 29 °C (Figure 2) followed first-order kinetics with $k_3 = 5.36 \times 10^{-3}$ s⁻¹, indicating that the Ni¹ complex most likely decomposed unimolecularlyt [equation (3)]. Similar irradiation at -100 to -150 °C led to anisotropic signals with g 2.294 and 2.127, in addition to the benzophenone ketyl radical signal at g 2.0029 (Figure 3) which was also obtained by photolysis of benzophenone. The shape as well as g-values of both isotropic and anisotropic spectra agree well with published data¹⁰ for Ni¹, but not Ni¹¹ ¹¹ species. The reaction pattern is represented by equations (1) - (4) where *Ar₂C=O is a triplet state ketone and L a co-ordinating ligand, and $RCH₂OH$ serves as the substrate and solvent as well as solvate molecules.

*Ar2C=0 + Ni(a~ac)~(RcH~oH)~ -& Ni(acac) (RCH20H), *^k* + acac' + Ar2C=0 (1)

*Ar2C=0 + RCH20H *5* Ar2k0H + ReHOH (2)

$$
\text{Ni}(acac)(\text{RCH}_2\text{OH})_n + 4\text{L} \rightarrow \text{Ni}^0 \text{ or } \text{NiL}_4 + \text{acac'} \tag{3}
$$

$$
acac^* + RCH_2OH \rightarrow acacH + R\dot{C}HOH
$$
 (4)

The quantum yield of the xanthen-9-one sensitized photoreduction, Φ_{Ni} , in ethanol increased in the $[Ni(\text{acc})_2]$ $\dot{\theta}$ —4 mm region reaching a constant value of 0.14 at [Ni- $(\text{acac})_2$ > 4 mm. In this concentration range, the quantum yield of xanthen-9-one photoreduction, Φ_X , decreased from 0.7 to 0.0 indicating that reactions (1) and (2) are unrelated. The rate constant of the former (k_1) was calculated from the

t E.s.r. traces by other sensitizers in the presence of phosphite or phosphine ligands gave similar features and first-order rate constants, and similar anisotropic spectra at low temperatures.

Stern-Volmer plots of $1/\Phi_{Ni}$ *vs.* $1/[Ni(\text{acac})_2]$ and $\Phi^{\circ}{}_{X}/\Phi_{X}$ *vs.* [Ni(acac)₂] to be $(7.1 \pm 1.6) \times 10^9$ and $(9.1 \pm 1.1) \times 10^9$ dm^3 mol⁻¹ s⁻¹, respectively, assuming the lifetime τ of triplet xanthen-9-one under these conditions to be 0.3 μ s.¹² \ddagger At $[Ni(acac)_2] > 4$ mm, the rate of equation (1) is calculated to be > 30 faster than that of equation (2) taking¹² $k_2 = 4 \times 10^4$ dm^3 mol⁻¹ s⁻¹. This means that Ar_2COH is not the reducing species for the photoreduction.

The quenching reaction, such as that shown in equation (1) , has been proposed to occur by a combination of charge transfer-spin exchange4 and energy transfer1 but is now evidently more complex. First, the failure of p-methoxyacetophenone to sensitize the photoreduction in comparison with the high efficiency of acetophenone does not agree with an energy transfer mechanism: both sensitizers possess more than enough energy to promote the ligand $\pi \rightarrow 3\pi^*$ or d-d transitions. Secondly, the photoreduction shows profound solvent dependency giving limiting Φ_{Ni} values of 0.08, 0.14, and 0.32 in methanol, ethanol, and propan-2-01, respectively. These observations must be related to the sensitization process and will be discussed in a full paper together with current experiments.

The authors thank the Natural Sciences and Engineering Research Council of Canada for generous financial support.

Received, 17th September 1984; Com. 1311

References

- 1 F. Wilkinson and A. Farmilo, J. *Chem. SOC., Furuduy Trans.* 2, **1976, 72, 604;** A. Adamczyk and F. Wilkinson, J. *Chem. SOC., Furuduy Trans.* 2, **1972,68,2031;** F. Wilkinson and C. Tsiamis, *J. Am. Chem. SOC.,* **1983, 105, 767.**
- **2** W. H. Moore, G. **S.** Hammond, and R. P. Foss, J. *Am. Chem. Soc.,* **196Q, 82,2789;** A. J. Fry, R. **S.** H. Liu, and G. **S.** Hammond, J. *Am. C'hem. SOC.,* **1966,88,4781.**
- **3** C. Steel and H. Linschitz, J. *Phys. Chem.,* **1964,68, 2577.**
- **4** G. Porter and M. R. Wright, *Discuss. Furuduy SOC.,* **1959,27, 18.**
- *5* Y. **L.** Chow and G. **E.** Buono-Core, *J. Am. Chem. Soc.,* **1982,104, 3770;** G. **E.** Buono-Core, K. Iwai, **Y.** L. Chow, T. Koyanagi, A. Kaji, and J. Hayami, *Can.* J. *Chem.,* **1979, 57, 8;** Y. **L.** Chow, G. E. Buono-Core, B. Marciniak, and C. Beddard, *ibid.,* **1983,61, 801.**
- **6** D. **P.** Graddon, *Coord. Chem. Rev.* **1969, 4, 1;** A. W. Adamson and P. D. Fleischauer, 'Concepts of Inorganic Photochemistry,' Wiley, New **York, 1975,** pp. **299-332.**
- **7** H. **D.** Gafney and R. **L.** Lintvedt, J. *Am. Chem. SOC.,* **1970, 92, 6996.** These authors reported the photoreduction of Ni(acac), by direct photolysis through a quartz filter.
- **8** J. J. LevisonandS. D. Robinson,./. *Chem. SOC. (A),* **1970,96;G.** Wilke, **E.** W. Miiller, and M. Kroner, *Angew. Chem.,* **1961, 73, 33.**
- **9** L. **S.** Meriweather and M. **L.** Fiene, *J. Am. Chem. SOC.,* **1959,81, 4200;** P. C. Ellgen, *Znorg. Chem.,* **1971, 10, 232;** B. Corain, M. Bressan, and G. Favero, *Znorg. Nucl. Chem. Lett.,* **1971, 7, 197.**
- 10 A. Tkâc and A. Staŝko, Collect. Czech. Chem. Commun., 1972, **37,537;** C. Amano, and **S.** Fujiwara, *Bull. Chem. SOC. Jpn.,* **1976, 49,1817; E.** Dinjus and R. Kirmse, *2. Chem.,* **1976,16,286; T.** T. Tsou and J. K. Kochi, J. *Am. Chem. SOC.,* **1979, 101,6319.**
- 11 P. Marathamuthu, L. K. Patterson, and G. Ferraudi, *Inorg. Chem.,* **1978, 17,3557.**
- **12** A. Garner and F. Wilkinson, J. *Chem. SOC., Furuduy Trans.* 2, **1972,72,1010;** J. C. Scaiano, *J. Am. Chem. Soc.,* **1980,102,7747.**

 \ddagger The lifetime of triplet xanthen-9-one was estimated from $k_2 = 4 \times 10^4$ dm³ mol⁻¹ s⁻¹ in ethanol and the self-quenching of triplet xanthen-9-one (ref. 12). Φ_{Ni} was determined by following decreases of the Ni(acac)₂ absorption at 630 nm and Φ_X by h.p.l.c. analysis.