Photoreduction of Bis(acetylacetonato)nickel(II) Sensitized by Triplet State Ketones

Yuan L. Chow and Gonzalo E. Buono-Core

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Aromatic ketones with high triplet state energy sensitized the photoreduction of bis(acetylacetonato)nickel(II), Ni(acac)₂, to give transient Ni¹ complexes which decomposed to Ni⁰ complexes in the dark.

Triplet state aromatic ketones and hydrocarbons are known to be efficiently quenched by a variety of metal complexes, as shown by flash excitation studies.^{1—5} We have found that only certain high triplet energy ketones, *e.g.*, xanthen-9-one, benzophenone, or acetophenone, can sensitize the photoreduction of bis(acetylacetonato)nickel(\mathfrak{ll}), Ni(acac)₂, to Ni^I complexes in H-atom donating solvents such as alcohols, tetrahydrofuran, and toluene. Fluoren-9-one, 2-acetonaphthone, *p*-methoxyacetophenone, and phenanthrene, while their triplet signals were efficiently quenched, failed to sensitize the photoreduction.

The dihydrate of Ni(acac)₂ utilized in this investigation has a

Figure 1. The e.s.r. signals recorded every 30 s following irradiation of Ni(acac)₂ (2 × 10⁻² M) and benzophenone (10⁻¹ M) in tetrahydrofuran at 22 °C; g-value 2.186, $\Delta H_{pp} = 46$ G (1G = 10⁻⁴ T).

Figure 2. The decay of the e.s.r. signal of Figure 1, recorded at 29 °C at 1 min intervals.

high-spin octahedral configuration and exhibits λ_{max} 295— 300 nm with shoulders at 255 and 312 nm.⁶ Benzophenone (or xanthen-9-one) sensitized photolysis of Ni(acac)₂ in methanol under nitrogen (Pyrex filter, hv > 300 nm) gave metallic nickel, acetylacetone (75%), and formaldehyde (65%) efficiently; sensitizers were not consumed. Acetaldehyde, acetone, and 1,2-diphenylethane were the oxidation products when ethanol, propan-2-ol, and toluene were used as solvents, respectively; in benzene and acetonitrile, no photoreduction occurred although triplet state ketones were totally quenched.

Figure 3. The e.s.r. signals recorded at -150 °C under similar irradiation conditions as in Figure 1; the spectra were taken at 10 °C increments up to -100 °C.

Direct irradiation of Ni(acac)₂ through a Corex or Pyrex filter caused no photoreduction.⁷ The photoreduction to the Ni⁰ state was confirmed by the isolation of Ni[P(OPh)₃]₄, Ni[1,2bis(diphenylphosphino)ethane]₂, and Ni(Ph₃P)₄⁸ from photolyses in the presence of appropriate ligands. A similar photoreduction of Ni(acac)₂ under carbon monoxide purging apparently gave Ni(CO)₄, which could be trapped with phosphines as Ni(CO)₂(Ph₃P)₂ or Ni(CO)₂[P(Buⁿ)₃]₂.⁹

E.s.r. monitoring of the sensitized photoreduction exhibited an isotropic signal due to the transient Ni¹ complex with a g-value of 2.186 ($\Delta H_{pp} = 46$ G) which built up to reach a photostationary state (Figure 1). The decay of the transient signal in the dark at 29 °C (Figure 2) followed first-order kinetics with $k_3 = 5.36 \times 10^{-3} \text{ s}^{-1}$, indicating that the Ni¹ complex most likely decomposed unimolecularly[†] [equation (3)]. Similar irradiation at -100 to -150 °C led to anisotropic signals with g 2.294 and 2.127, in addition to the benzophenone ketyl radical signal at g 2.0029 (Figure 3) which was also obtained by photolysis of benzophenone. The shape as well as g-values of both isotropic and anisotropic spectra agree well with published data¹⁰ for Ni¹, but not Ni¹¹¹ ¹¹ species. The reaction pattern is represented by equations (1)—(4) where *Ar₂C=O is a triplet state ketone and L a co-ordinating ligand, and RCH₂OH serves as the substrate and solvent as well as solvate molecules.

*Ar₂C=O + Ni(acac)₂(RCH₂OH)₂
$$\xrightarrow{\kappa_1}$$
 Ni(acac)(RCH₂OH)_n
+ acac' + Ar₂C=O (1)

*Ar₂C=O + RCH₂OH
$$\stackrel{k_2}{\rightarrow}$$
 Ar₂ĊOH + RĊHOH (2)

$$Ni(acac)(RCH_2OH)_n + 4L \rightarrow Ni^0 \text{ or } NiL_4 + acac$$
(3)

acac' +
$$RCH_2OH \rightarrow acacH + R\dot{C}HOH$$
 (4)

The quantum yield of the xanthen-9-one sensitized photoreduction, Φ_{Ni} , in ethanol increased in the $[Ni(acac)_2] 0-4$ mm region reaching a constant value of 0.14 at $[Ni-(acac)_2] > 4$ mm. In this concentration range, the quantum yield of xanthen-9-one photoreduction, Φ_X , decreased from 0.7 to 0.0 indicating that reactions (1) and (2) are unrelated. The rate constant of the former (k_1) was calculated from the

[†] E.s.r. traces by other sensitizers in the presence of phosphite or phosphine ligands gave similar features and first-order rate constants, and similar anisotropic spectra at low temperatures.

Stern–Volmer plots of $1/\Phi_{Ni} vs. 1/[Ni(acac)_2]$ and $\Phi^{\circ}_X/\Phi_X vs.$ [Ni(acac)_2] to be $(7.1 \pm 1.6) \times 10^9$ and $(9.1 \pm 1.1) \times 10^9$ dm³ mol⁻¹ s⁻¹, respectively, assuming the lifetime τ of triplet xanthen-9-one under these conditions to be 0.3 μ s.¹² ‡ At [Ni(acac)_2] > 4 mM, the rate of equation (1) is calculated to be > 30 faster than that of equation (2) taking¹² $k_2 = 4 \times 10^4$ dm³ mol⁻¹ s⁻¹. This means that Ar₂COH is not the reducing species for the photoreduction.

The quenching reaction, such as that shown in equation (1), has been proposed to occur by a combination of charge transfer-spin exchange⁴ and energy transfer¹ but is now evidently more complex. First, the failure of *p*-methoxyacetophenone to sensitize the photoreduction in comparison with the high efficiency of acetophenone does not agree with an energy transfer mechanism: both sensitizers possess more than enough energy to promote the ligand $\pi \rightarrow 3\pi^*$ or d-d transitions. Secondly, the photoreduction shows profound solvent dependency giving limiting Φ_{Ni} values of 0.08, 0.14, and 0.32 in methanol, ethanol, and propan-2-ol, respectively. These observations must be related to the sensitization process and will be discussed in a full paper together with current experiments.

The authors thank the Natural Sciences and Engineering Research Council of Canada for generous financial support.

Received, 17th September 1984; Com. 1311

References

- F. Wilkinson and A. Farmilo, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 604; A. Adamczyk and F. Wilkinson, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 2031; F. Wilkinson and C. Tsiamis, J. Am. Chem. Soc., 1983, 105, 767.
- 2 W. H. Moore, G. S. Hammond, and R. P. Foss, J. Am. Chem. Soc., 1960, 82, 2789; A. J. Fry, R. S. H. Liu, and G. S. Hammond, J. Am. Chem. Soc., 1966, 88, 4781.
- 3 C. Steel and H. Linschitz, J. Phys. Chem., 1964, 68, 2577.
- 4 G. Porter and M. R. Wright, Discuss. Faraday Soc., 1959, 27, 18.
- 5 Y. L. Chow and G. E. Buono-Core, J. Am. Chem. Soc., 1982, 104, 3770; G. E. Buono-Core, K. Iwai, Y. L. Chow, T. Koyanagi, A. Kaji, and J. Hayami, Can. J. Chem., 1979, 57, 8; Y. L. Chow, G. E. Buono-Core, B. Marciniak, and C. Beddard, *ibid.*, 1983, 61, 801.
- 6 D. P. Graddon, Coord. Chem. Rev. 1969, 4, 1; A. W. Adamson and P. D. Fleischauer, 'Concepts of Inorganic Photochemistry,' Wiley, New York, 1975, pp. 299-332.
- 7 H. D. Gafney and R. L. Lintvedt, J. Am. Chem. Soc., 1970, 92, 6996. These authors reported the photoreduction of Ni(acac)₂ by direct photolysis through a quartz filter.
- 8 J. J. Levison and S. D. Robinson, J. Chem. Soc. (A), 1970, 96; G. Wilke, E. W. Müller, and M. Kröner, Angew. Chem., 1961, 73, 33.
- 9 L. S. Meriweather and M. L. Fiene, J. Am. Chem. Soc., 1959, 81, 4200; P. C. Ellgen, Inorg. Chem., 1971, 10, 232; B. Corain, M. Bressan, and G. Favero, Inorg. Nucl. Chem. Lett., 1971, 7, 197.
- A. Tkåc and A. Staŝko, Collect. Czech. Chem. Commun., 1972, 37, 537; C. Amano, and S. Fujiwara, Bull. Chem. Soc. Jpn., 1976, 49, 1817; E. Dinjus and R. Kirmse, Z. Chem., 1976, 16, 286; T. T. Tsou and J. K. Kochi, J. Am. Chem. Soc., 1979, 101, 6319.
- 11 P. Marathamuthu, L. K. Patterson, and G. Ferraudi, Inorg. Chem., 1978, 17, 3557.
- 12 A. Garner and F. Wilkinson, J. Chem. Soc., Faraday Trans. 2, 1972, 72, 1010; J. C. Scaiano, J. Am. Chem. Soc., 1980, 102, 7747.

[‡] The lifetime of triplet xanthen-9-one was estimated from $k_2 = 4 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ in ethanol and the self-quenching of triplet xanthen-9-one (ref. 12). Φ_{Ni} was determined by following decreases of the Ni(acac)₂ absorption at 630 nm and Φ_{X} by h.p.l.c. analysis.