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Stereochemical Course of the Hydration Reaction catalysed by

p-Hydroxydecanoylthioester Dehydrase
John M. Schwab,*t John B. Klassen, and Asif Habib

Department of Chemistry, The Catholic University of America, Washington, DC 20064, U.S.A.

Enzyme-catalysed hydration of the N-acetylcysteamine thioester of (E)-dec-2-enoic acid to the corresponding
thioester of (R)-3-hydroxydecanoic acid proceeds in a syn fashion, with protonation on the si face at substrate C-2.

B-Hydroxydecanoylthioester dehydrase,! the key enzyme in
the biosynthesis of unsaturated fatty acids in bacteria under
anaerobic conditions, mediates the interconversion of thioes-
ters of (R)-3-hydroxydecanoic acid, (E)-dec-2-enoic acid, and
(Z)-dec-3-enoic acid, (1), (2), and (3), respectively (R = acyl
carrier protein, in vivo). We present evidence herein that the
dehydrase-catalysed hydration of (2) to give (1) is a syn
process, a result that is stereochemically and mechanistically
consistent with previous findings2— for the allylic isomeriza-
tion of (2) to (3).

Figure 1(a) portrays the C-2 region of the 400 MHz 'H
n.m.r. spectrum of unlabelled 3-hydroxydecanoyl-NAC
(NAC = N-acetylcysteamine). Clearly, this is the AB portion
of an ABX system. Analysis shows that H, and Hg resonate at
0 2.75 (Jax 3.3 Hz) and 2.68 (Jzx 8.6 Hz), respectively, with
Jap 15.4 Hz. Assuming that the preferred conformation of
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3-hydroxydecanoyl-NAC is governed by hydrogen bonding
between the hydroxy group and the carbonyl oxygen (with the
heptyl substituent in a quasi-equatorial orientation), absolute
signal assignments can be made. Based on vicinal couplings,’
the higher and lower field C-2 resonances represent Hg and
Hg, respectively.

(E)-[2-2H]Dec-2-enoyl-NAC#+ and unlabelled (E)-dec-2-
enoyl-NAC were incubated with dehydrase in 'H,O and
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Figure 1. 400 MHz 'H n.m.r. spectra of unlabelled and labelled
3-hydroxydecanoyl-NAC. The scale-expanded C-2 proton regions of
(a) unlabelled (RS)-3-hydroxydecanoyl-NAC, (b) (25,3R)-[2-2H,]-3-
hydroxydecanoyl-NAC, from enzyme-catalysed hydration of
unlabelled (E)-dec-2-enoyl-NAC in 2H,0, and (c) (2R,3R)-{2-2H, ]-3-
hydroxydecanoyl-NAC from enzyme-catalysed hydration of (E)-[2-
2H]dec-2-enoyl-NAC in 'H,O. The samples were dissolved in CDCl,,
and internal SiMe, was used as standard.

2H,0, respectively, as previously described.* (3R)-3-[2-
2H,]Hydroxydecanoyl-NAC was isolated from each incuba-
tion mixture and the 'H n.m.r. spectrum of each sample was
obtained (Figure 1). Spectrum (b) is that of hydroxythioester
from incubation of unlabelled substrate in ZH,O. A narrow
doublet is evident at & 2.73 (overlapping peaks stemming from
unlabelled compound), corresponding to Hg. The spectrum of
hydroxythioester from the complementary incubation,
however, shows [Figure 1(c)] a broadened doublet (J 8.2 Hz)
centred at § 2.66 (in addition to resonances attributable to the
presence of a small amount of the unlabelled compound).
Clearly these results are complementary and indicate that in
each case, protonation has occurred on the si face at C-2 of
(E)-dec-2-enoyl-NAC. The specific coupling patterns obser-
ved are entirely consistent with expectation, as in each case
the geminal H-D coupling is reduced to ca. 1/6.5 of the
corresponding H-H value (15.4/6.5 = 2.4 Hz). The small
discrepancies in the chemical shifts of the C-2 protons of the
labelled vs. the unlabelled hydroxythioester are readily
explained in terms of the well known isotope shift.6
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Enzymes catalysing syn’ and anti® hydration—dehydration
reactions are well known. The present finding was predictable
in that (a) the C-3-OH group of the hydroxythioester is in the
R configuration, and (b) the dehydrase-catalysed isomerisa-
tion of (2) to (3) is known3# to involve protonation of the
former on the si face at C-2. The steric courses of the various
dehydrase-catalysed reactions>—*9 are consistent with one
another and strongly implicatel? a single active site base, a
histidine residue.!! For stereoelectronic reasons it is clear that
dehydrase-catalysed reactions involve delocalized carbanionic
(or enolic) intermediates and are not concerted processes.
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