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Enzyme-catalysed hydration of the N-acetylcysteamine thioester of (E)-dec-2-enoic acid to the corresponding 
thioester of (R)-3-hydroxydecanoic acid proceeds in a syn fashion, with protonation on the si face at substrate C-2. 

P-Hydroxydecanoylthioester dehydrase , I  the key enzyme in 
the biosynthesis of unsaturated fatty acids in bacteria under 
anaerobic conditions, mediates the interconversion of thioes- 
ters of (R)-3-hydroxydecanoic acid, (Q-dec-2-enoic acid, and 
(Z)-dec-3-enoic acid, (l), (2), and (3), respectively (R = acyl 
carrier protein, in vivo). We present evidence herein that the 
dehydrase-catalysed hydration of (2) to give (1) is a syn 
process, a result that is stereochemically and mechanistically 
consistent with previous findings24 for the allylic isomeriza- 
tion of (2) to (3). 

Figure l(a) portrays the C-2 region of the 400 MHz lH 
n.m.r. spectrum of unlabelled 3-hydroxydecanoyl-NAC 
(NAC = N-acetylcysteamine). Clearly, this is the AB portion 
of an ABX system. Analysis shows that HA and HB resonate at 
6 2.75 (JAX 3.3 Hz) and 2.68 (IBX 8.6 Hz), respectively, with 
JAB 15.4 Hz. Assuming that the preferred conformation of 

3-hydroxydecanoyl-NAC is governed by hydrogen bonding 
between the hydroxy group and the carbonyl oxygen (with the 
heptyl substituent in a quasi-equatorial orientation), absolute 
signal assignments can be made. Based on vicinal couplings,5 
the higher and lower field C-2 resonances represent Hs and 
HR, respectively. 

(E)-[2-2H]Dec-2-enoyI-NAC4 and unlabelled (E)-dec-2- 
enoyl-NAC were incubated with dehydrase in 1H20 and 
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Enzymes catalysing syn7 and anti8 hydration-dehydration 
reactions are well known. The present finding was predictable 
in that (a) the C-3-OH group of the hydroxythioester is in the 
R configuration, and (b) the dehydrase-catalysed isomerisa- 
tion of (2) to (3) is kn0wn~3~ to involve protonation of the 
former on the si face at C-2. The steric courses of the various 
dehydrase-catalysed reactions*4>9 are consistent with one 
another and strongly implicate10 a single active site base, a 
histidine residue. 11 For stereoelectronic reasons it is clear that 
dehydrase-catalysed reactions involve delocalized carbanionic 
(or enolic) intermediates and are not concerted processes. 

I We thank Mr. Gin0 M. Salituro (The Johns Hopkins 
University) for obtaining the high-field n.m.r. spectra, using D 
an instrument purchased with grants from the N.I.H. and the 
N.S.F. Financial support for these experiments has been 
provided by the N.I.H. 
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Figure 1. 400 MHz 1H n.m.r. spectra of unlabelled and labelled 
3-hydroxydecanoyl-NAC. The scale-expanded C-2 proton regions of 
(a) unlabelled (RS)-3-hydroxydecanoyl-NAC, (b) (2S,3R)-[2-2Hl]-3- 
hydroxydecanoyl-NAC, from enzyme-catalysed hydration of 
unlabelled (E)-dec-2-enoyl-NAC in 2H20, and (c) (2R,3R)-[2-2H,]-3- 
hydroxydecanoyl-NAC from enzyme-catalysed hydration of (E)-[2- 
2Hldec-2-enoyl-NAC in 1H20. The samples were dissolved in CDC13, 
and internal SiMe4 was used as standard. 

2H20, respectively, as previously described .4 (3R)-3-[2- 
2H1]Hydroxydecanoyl-NAC was isolated from each incuba- 
tion mixture and the 1H n.m.r. spectrum of each sample was 
obtained (Figure 1). Spectrum (b) is that of hydroxythioester 
from incubation of unlabelled substrate in 2H20. A narrow 
doublet is evident at 6 2.73 (overlapping peaks stemming from 
unlabelled compound), corresponding to HR. The spectrum of 
hydroxythioester from the complementary incubation, 
however, shows [Figure l(c)] a broadened doublet (J 8.2 Hz) 
centred at 6 2.66 (in addition to resonances attributable to the 
presence of a small amount of the unlabelled compound). 
Clearly these results are complementary and indicate that in 
each case, protonation has occurred on the si face at C-2 of 
(E)-dec-Zenoyl-NAC. The specific coupling patterns obser- 
ved are entirely consistent with expectation, as in each case 
the geminal H-D coupling is reduced to ca. U6.5 of the 
corresponding H-H value (15.4/6.5 = 2.4 Hz). The small 
discrepancies in the chemical shifts of the C-2 protons of the 
labelled vs. the unlabelled hydroxythioester are readily 
explained in terms of the well known isotope shift.6 
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