The $[6-CB_9H_{14}]^-$ Anion: the Missing Link between Parent Ten-Vertex arachno-Boranes and Dicarbaboranes

Bohumil Štibr,* Tomáš Jelinek, Jaromir Plešek, and Stanislav Heřmánek

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Řež near Prague, Czechoslovakia

Reduction of the *nido*-[6-CB₉H₁₂]⁻[NMe₃H]⁺ salt with sodium metal in refluxing liquid ammonia produced in high yield a new *arachno*-[6-CB₉H₁₄]⁻ anion which was characterized using ¹H, ¹³C, ¹¹B, and two-dimensional (2-D) ¹¹B-¹¹B, n.m.r. spectroscopy.

Two parent 10-vertex *arachno*-boranes and dicarbaboranes, the $[B_{10}H_{14}]^{2-}$ anion¹ and 6,9-C₂B₈H₁₄²⁻⁴ are well known and have been fully characterized. Although isoelectronic analogues of *arachno*-[6-CB₉H₁₄]⁻, 9-L-6-CB₉H₁₃ compounds (L = Me₂S, MeCN, PPh₃), were prepared in our laboratory⁵ in 1976, all attempts at isolating the former missing parent monocarbaborane congener have so far been unsuccessful. We now report the development of an efficient preparative method for obtaining salts of the *arachno*-[6-CB₉H₁₄]⁻ anion.

Treatment of the *nido*-[6-CB₉H₁₂]⁻ anion (1)⁶ ([NMe₃H]⁺ salt) with sodium metal in refluxing liquid ammonia for 8 h, followed by decomposition of the mixture with 5% aqueous NaOH and precipitation with CsCl, led to the isolation of pure *arachno*-[6-CB₉H₁₄]⁻ anion (2) (Cs⁺ salt, 60%). The second crop of (2) was obtained on precipitation of the mother liquor with NMe₄Cl to give [6-CB₉H₁₄]⁻ [NMe₄]⁺ (30%, total yield 90%) after recrystallization from aqueous acetone. The latter salt was also converted into [BH₂(PPh₃)₂]⁺[6-CB₉H₁₄]⁻ by treatment with [BH₂(PPh₃)₂]⁺I⁻ in acetone–chloroform (1:2). The former boronium salt was then purified by column chromatography on aluminium oxide in dichloromethane. Evaporation of the fraction of R_F 0.15 (checked by t.l.c. on

Figure 1. Gross geometry of the arachno- $[6-CB_9H_{14}]^-$ anion (2).

Figure 2. (a) Two dimensional (2-D) proton decoupled ${}^{11}B{-}^{11}B$ n.m.r. spectrum of $[BH_2(PPh_3)_2]^+[6-CB_9H_{14}]^-$ at 64.18 MHz in CDCl₃. Labelled peaks on diagonal correspond to (b) the conventional 1-D spectrum; off diagonal cross peaks reveal scalar coupling between specific boron nuclei.

 Al_2O_3) and crystallization of the residue from chloroformtoluene (1:1) afforded large crystals of the boronium salt of (2).

Apart from the overlapping resonances of terminal BH units in the range $\delta - 1.8 - 4.0$, the ¹H n.m.r. spectrum of (2)⁺ consists of three singlets of relative intensities 1:1:2 assigned to equatorial (*exo*) and axial (*endo*) protons of the skeletal CH₂ group and to two equivalent bridging protons. The corresponding ¹³C n.m.r. spectrum⁺ shows one triplet due to the resonance of the cage CH₂ group. The proton coupled ¹¹B n.m.r. spectrum of (2)⁺ exhibits one triplet (intensity 1B) (cage BH₂ group) and five doublets of relative intensities 1:1:2:2:2:2. From the known cage geometry of the 10-vertex *arachno*-family of borane compounds¹⁻⁴ we can interpret the 2-D ¹¹B-¹¹B n.m.r. spectrum [Figure 2(a)] and assign the resonances in the 1-D spectrum [Figure 2(b)] to specific boron nuclei. In this scheme, all adjacent borons gave rise to the observed cross peaks expected for structure (2) (Figure 1) except for those between the B(5)-B(10) and B(7)-B(8) nuclei which are bound by hydrogen bridges.

These data unambiguously suggest for structure (2) a 26 cage-electron 10-vertex *arachno*-cluster with a pair of equivalent hydrogen bridges symmetrically arranged about the rim of the open hexagonal face.

Received, 10th February 1987; Com. 180

References

- 1 E. L. Muetterties, Inorg. Chem., 1963, 2, 647.
- 2 B. Štibr, J. Plešek, and S. Heřmánek, Chem. Ind. (London), 1972, 649.
- 3 B. Štibr, J. Plešek, and S. Heřmánek, Collect. Czech. Chem. Commun., 1974, 39, 1805.
- 4 Z. Janoušek, J. Plešek, S. Heřmánek, and B. Štibr, Polyhedron, 1985, 4, 1797.
- 5 K. Baše, S. Heřmånek, and B. Štibr, Chem. Ind. (London), 1976, 1068
- 6 K. Baše, B. Štibr, J. Dolanský, and J. Duben, Collect. Czech. Chem. Commun., 1981, 46, 2345.

[†] Fourier transform n.m.r. data for (2): ¹H n.m.r. (NMe₄ salt, 100 MHz, rel. Me₄Si, CD₃COCD₃), δ 3.44 (s, 12H, NMe₄+), -0.22 [s, 1H, exo-H(6)], -2.00 [s, 1H, endo-H(6)], -3.92 [br. s, 2H, μ-H]; ¹³C n.m.r. (Cs⁺ salt, 50.31 MHz, rel. Me₄Si, CD₃COCD₃), $\delta_{\rm C}$ -3.90 [t, J(CH) 146 Hz, C(6)]; ¹¹B n.m.r. (NMe₄⁺ salt, 64.18 MHz, CD₃COCD₃), $\delta_{\rm B}$ -1.32 [d, 1B, J(BH) 142 Hz, B(4)], -10.21 [d, 1B, J(BH) 162 Hz, B(2)], -12.80 [d, 2B, J(BH) 147, 143 Hz, B(5,7)], -22.57 [t, 1B, J(BH) 112 Hz, B(9)], -28.47 [d, 2B, J(BH) 137 Hz, B(8,10)], -39.51 [d, 2B, J(BH) 141 Hz, B(1,3)]; ¹¹B n.m.r. [BH₂(PPh₃)₂, + salt, 64.18 MHz, CDCl₃], $\delta_{\rm B}$ -2.04 [d, 1B, J(BH) 131 Hz, B(4)], -10.66 [d, 1B, J(BH) 166 Hz, B(2)], -13.64 [d, 2B, J(BH) 141/143 Hz, B(5,7)], -24.75 [t, 1B, J(BH) 110 Hz, B(9)], -29.23 [d, 2B, J(BH) 144 Hz, B(8,10)], -33.25 [br. s, 1B, BH₂(PPh₃)₂+], -40.30 [d, 2B, J(BH) 138 Hz, B(1,3)].