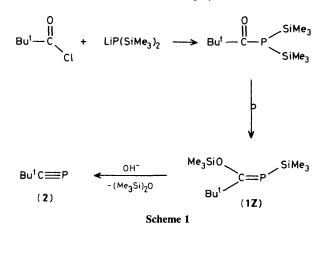
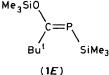
Remarkable Differences in the Reactivities of the (*E*)- and (*Z*)-Isomers of a Phosphaalkene

Andrew R. Barron, Alan H. Cowley,* and Stephen W. Hall

Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 U.S.A.

The (*E*)- and (*Z*)-isomers of the phospha-alkene, Bu^t(Me₃SiO)C=PSiMe₃, show markedly different reactivities towards heat and molecular oxygen.


Pioneering work by Becker *et al.*¹ established that the sequence of reactions in Scheme 1 leads to Bu¹C=P, a stable phospha-alkyne which has proved to be of importance both as a reagent² and as a ligand.³ Only the (Z)-isomer of the phospha-alkene, Bu¹(Me₃SiO)C=PSiMe₃, was formed when the reaction of Bu¹C(O)Cl with LiP(SiMe₃)₂ took place at 20 °C. We have now found that (i) conducting this reaction at -78 °C results in exclusive formation of the phospha-alkene isomer, (1E), (ii) the reactivities of (1E) and (1Z) are markedly different, and (iii) (1E) is converted rapidly into (2) by a novel catalytic oxygenation.


Treatment of Bu^LC(\dot{O})Cl with LiP(SiMe₃)₂ in cyclopentane solution at -78 °C rather than 20 °C resulted in the formation of (**1***E*). As expected, the n.m.r. data for the two isomers are

rather similar; \dagger however, (1E) and (1Z) can be differentiated by the fact that the ${}^{2}J_{PC}$ and ${}^{3}J_{PC}$ coupling constants are significantly larger for the latter owing to the *cis* relationship of the Bu^t group and the phosphorus lone pair.⁴ We have

[†] N.m.r. spectra recorded at ambient temperature relative to 85% H₃PO₄ (³¹P) or SiMe₄ (¹³C). Compound (**1Z**) ³¹P{¹H} n.m.r. (32.2 MHz) δ + 120 p.p.m. (s); ¹³C{¹H} n.m.r. (75.4 MHz) δ 0.9 (d, ²J_{PC} 8.3 Hz, PSiC), 2.0 (s, OSiC), 30.5 (d, ³J_{PC} 9.8 Hz, PCCC), 45.0 (d, ²J_{PC} 24.9 Hz, PCC), 227 (d, ¹J_{PC} 80.5 Hz, PC).

Compound (1*E*) ³¹P{¹H} n.m.r. (32.2 MHz) δ + 124 p.p.m. (s); ¹³C{¹H} n.m.r. (75.4 MHz) δ 0.9 (d, ²*J*_{PC} 8.1 Hz, PSiC), 2.0 (s, OSiC), 30.7 (d, ³*J*_{PC} 2.0 Hz, PCCC), 45.2 (d, ²*J*_{PC} 12.2 Hz, PCC), 229 (d, ¹*J*_{PC} 80.6 Hz, PC).

found no evidence for the interconversion of (1E) and (1Z) either photochemically or thermally.

The literature method for converting (1Z) into (2) involves treatment with NaOH in diethylene glycol dimethyl ether.¹ We have found that higher yields of (2) can be realised by heating (1Z) at 140 °C in the absence of a solvent. Interestingly, no (2) was detected when (1E) was heated under the same conditions. Monitoring of these reactions by 70 eV electron impact mass spectrometry revealed that whilst (1Z)decomposed by $(Me_3Si)_2O$ loss, (1E) eliminated Bu'SiMe₃ and only traces of $(Me_3Si)_2O$ were detectable.

Of particular interest is the fact that in the presence of small quantities of molecular oxygen, cyclopentane solutions of (1E) are converted into (2) in quantitative yields, thus representing a significantly improved synthesis of this phospha-alkyne. By contrast, oxygenation of (1Z) does not

produce (2), but results only in decomposition. We do not have any evidence on the mechanism of the reaction; however, it is possible that it proceeds *via* oxygenation at the phosphorus atom of (1E), a process previously observed by Bickelhaupt *et al.*,⁵ followed by Me₃Si migration‡ and elimination of (Me₃Si)₂O. In independent experiments we have demonstrated that (2) is unreactive towards O₂.

Finally, we note that both (1E) and (1Z) are converted into (2) in high yield by treatment with a stoicheiometric quantity of Fe₂(CO)₉. Since both the (E)- and (Z)-isomers react with Fe₂(CO)₉ in an identical manner, we propose that the reaction proceeds via an η^2 -phospha-alkene Fe(CO)₄ complex which decomposes to (2) and oligometric iron siloxy-silyl compounds.

We are grateful to the U.S. Army Research Office and the Robert A. Welch Foundation for financial support.

Received, 19th January 1987; Com. 065

References

- G. Becker, G. Gresser, and U. Uhl, Z. Naturforsch., Teil B, 1981, 36, 16; G. Becker, Z. Anorg. Allg. Chem., 1977, 430, 66; 1981, 480, 21.
- R. Appel, F. Knoll, and I. Ruppert, Angew. Chem., Int. Ed. Engl., 1981, 20, 731; G. Becker, W. Becker, and O. Mundt, Phosphorus Sulfur, 1983, 14, 267; E. A. Ishmaeva and I. I. Patsanovskii, Russ. Chem. Rev. (Engl. Transl.), 1985, 54, 243.
- 3 P. B. Hitchcock, M. J. Maah, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 737, and references therein; O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1985, 24, 924.
- 4 G. Becker, O. Mundt, and G. Uhl, Z. Anorg. Allg. Chem., 1984, 517, 89; M. Yoshifuji, K. Toyota, and N. Inamoto, *Tetrahedron Lett.*, 1983, 24, 1653.
- 5 T. A. van der Knaap, T. C. Klebach, R. Lourens, M. Vos, and F. Bickelhaupt, J. Am. Chem. Soc., 1983, 105, 4026.

[‡] The oxidation of P-SiMe₃ compounds results in P-O-SiMe₃ moieties, *e.g.* the reaction of O_2 with Ph₂SiMe₃ produces PH₂P(O)-SiMe₃.