A Quantitative Approach to the Pseudo- π Nature of Cyclopropane

A. C. Legon*a and D. J. Millen*b

^a Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.

^b Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

A quantitative measure of limiting gas-phase nucleophilicity is proposed for ethyne, ethene, and the pseudo- π donor cyclopropane and allows the conclusion that cyclopropane is the best nucleophile of the three.

There is a long-standing recognition among chemists that cyclopropane behaves in several ways like an unsaturated hydrocarbon, that is cyclopropane can be assigned a pseudo- π character. The question then arises: can this pseudo- π property be measured and compared quantitatively with the π -donor ability of ethyne and ethene, for example?

We have recently developed¹ numerical scales of limiting, gas-phase nucleophilicities N and electrophilicities E of molecules which are based on the strength of the hydrogen bond in dimers $B \cdots HX$, as measured by the intermolecular stretching force constant k_{σ} . The scales have been based so far on dimers $B \cdots HX$ in which angular geometry can be predicted² if the HX molecule is assumed to lie along the axis of a nonbonding electron pair on the acceptor atom in B (*i.e.* on *n*-type hydrogen bonds). We now extend the scale of nucleophilicities to include the series B = ethyne, ethene, and cyclopropane (see Figure 1 for geometries) and show that the pseudo π -bonded system is more nucleophilic than the π -systems.

$$k_{\sigma} = cEN \tag{1}$$

Figure 1. Observed angular geometries of $B \cdots HCl$ where B = ethyne, ethene, and cyclopropane.

The electrophilicity E of the H end of HX and the nucleophilicity N of the acceptor region of B are related to k_{σ} empirically according to equation (1), where c = 0.25 Nm⁻¹ and E and N are numbers.¹ By use of this equation, we have been able to reproduce the k_{σ} for a large number of dimers using only a small number of E and N values. This empirical relationship can be rationalized on the basis of the electrostatic model of the hydrogen bond. It has been shown that the major contribution to equilibrium dissociation energies (D_e) is electrostatic and that, moreover, this contribution is controlled mainly by the local interaction between the net charges

Table 1. Observed and calculated force constants $k_{\sigma}/\text{Nm}^{-1}$ for π - and pseudo- π hydrogen-bonded complexes.^a

	Ethyne	Ethene	Cyclopropane 8.0 (8.0) ^d	
HCl	6.4 (6.4) ^b	5.9 (5.9)°		
HCN	5.2 (5.4) ^e	4.5 (5.0) ^f	6.3 (6.8) ^g	

^a Figures in parentheses are calculated using equation (1). See text for discussion. ^b A. C. Legon, P. D. Aldrich, and W. H. Flygare, J. Chem. Phys., 1981, **75**, 625. ^c P. D. Aldrich, A. C. Legon, and W. H. Flygare, J. Chem. Phys., 1981, **75**, 2126. ^d A. C. Legon, P. D. Aldrich, and W. H. Flygare, J. Chem. Phys., 1981, **75**, 2126. ^d A. C. Legon, P. D. Aldrich, and W. H. Flygare, J. Am. Chem. Soc., 1982, **104**, 1486. ^e P. D. Aldrich, S. G. Kukolich, and E. J. Campbell, J. Chem. Phys., 1983, **78**, 3521. ^f S. G. Kukolich, W. G. Read, and P. D. Aldrich, J. Chem. Phys., 1983, **78**, 3552. ^g S. G. Kukolich, J. Chem. Phys., 1983, **78**, 3552. ^g S. G. Kukolich, J. Chem. Phys., 1983, **78**, 4832.

Table 2. Nucleophilicities N(B) of a series of *n*-acceptors and π -acceptors B.

n-Type	N ₂ 2.2	CO 3.4	PH ₃ 4.4	H ₂ S 4.8	HCN 7.3	H ₂ O 10.0	NH₃ 11.5
π-Туре	C ₂ H ₂ 5.1	C ₂ H ₄ 4.7	⊽ª 6.4				
$a \nabla = cyclopropane.$							

on the acceptor atom and the active proton.^{3,4} Since it now appears that, from the limited number of accurate D_e values known,^{5–8} D_e is almost proportional to k_o , the basis of the empirical relationship (1) is evident.

We are now in a position to determine nucleophilicities N for B = ethene, ethyne, and cyclopropane from the values of k_{σ} recorded in Table 1 for B \cdots HX, where X = Cl and CN. The k_{σ} in Table 1, like those referred to above, have been determined from centrifugal distortion constants⁹ obtained by analyses of rotational spectra of B \cdots HX. We first take E =5.0 and 4.25 for X = Cl and CN obtained by use of equation (1) for several series of *n*-type dimers.¹ Then, N(B) are available from k_{σ} for B \cdots HCl in Table 1 as follows: N(ethyne) = 5.1, N(ethene) = 4.7 and N(cyclopropane) = 6.4. Finally, as a check on the validity of these π -type N values, we calculate k_{σ} for all three species B \cdots HCN in Table 1 and compare them with observed values. The agreement is satisfactory.

A result of immediate chemical interest is available from the π -type N(B) values. While, as might be expected, ethyne is a slightly stronger nucleophile than ethene, we find the surprising result that cyclopropane is appreciably stronger than both.

Indeed, we note, from the series of both *n*-type and π -type N(B) values collected in Table 2, that the order of the limiting gas-phase nucleophilicities of B is

$$N_2 < CO < PH_3 \sim C_2H_4 \sim C_2H_2 < H_2S \sim \bigtriangledown < HCN < H_2O.$$

The above arguments cannot be extended to the π -type series $\mathbf{B} \cdot \cdot \cdot \mathbf{HF}$ at the moment because the only value of k_{σ} presently available is that for $\mathbf{B} = \text{cyclopropane.}^{10}$ Further work on the rotational spectra of $\mathbf{B} \cdot \cdot \cdot \mathbf{HF}$ where $\mathbf{B} = \text{ethyne}$ and ethene is necessary in order to determine k_{σ} .

We gratefully acknowledge the support of the S.E.R.C. for our work on hydrogen bonding.

Received, 17th March 1987; Com. 334

References

- 1 A. C. Legon and D. J. Millen, J. Am. Chem. Soc., 1987, 109, 356.
- 2 A. C. Legon and D. J. Millen, Acc. Chem. Res., 1987, 20, 39.
- 3 H. Umeyama and K. Morokuma, J. Am. Chem. Soc., 1977, 99, 1316.
- 4 G. J. B. Hurst, P. W. Fowler, A. J. Stone, and A. D. Buckingham, Int. J. Quantum Chem., 1986, 29, 1223.
- 5 A. C. Legon, D. J. Millen, P. J. Mjöberg, and S. C. Rogers, *Chem. Phys. Lett.*, 1978, 55, 157.
- 6 A. C. Legon, D. J. Millen, and H. M. North, J. Chem. Phys., 1987, 86, 2530.
- 7 A. S. Pine and B. J. Howard, J. Chem. Phys., 1986, 84, 590.
- 8 A. C. Legon, D. J. Millen, and H. M. North, Chem. Phys. Lett., 1987, 135, 303.
- 9 D. J. Millen, Can. J. Chem., 1985, 63, 1477.
- 10 L. W. Buxton, P. D. Aldrich, J. A. Shea, A. C. Legon, and W. H. Flygare, J. Chem. Phys., 1981, 75, 2681.