A Quantitative Approach to the Pseudo-n Nature of Cyclopropane

A. C. Legon*a and D. J. Millen*b

^a*Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.*

b *Christopher lngold Laboratories, University College London, 20 Gordon Street, London WCl H OAJ, U.K.*

A quantitative measure of limiting gas-phase nucleophilicity is proposed for ethyne, ethene, and the pseudo- π donor cyclopropane and **allows** the conclusion that cyclopropane is the best nucleophile of the three.

There is a long-standing recognition among chemists that cyclopropane behaves in several ways like an unsaturated hydrocarbon, that is cyclopropane can be assigned a pseudo- π character. The question then arises: can this pseudo- π property be measured and compared quantitatively with the π -donor ability of ethyne and ethene, for example?

We have recently developed¹ numerical scales of limiting, gas-phase nucleophilicities *N* and electrophilicities *E* of molecules which are based on the strength of the hydrogen bond in dimers $B \cdots HX$, as measured by the intermolecular stretching force constant k_{σ} . The scales have been based so far on dimers $B \cdots HX$ in which angular geometry can be predicted2 if the **HX** molecule is assumed to lie along the axis of a nonbonding electron pair on the acceptor atom in B *(i.e.* on n-type hydrogen bonds). We now extend the scale of nucleophilicities to include the series $B = e$ thyne, ethene, and cyclopropane (see Figure 1 for geometries) and show that the pseudo π -bonded system is more nucleophilic than the x-systems.

$$
k_{\sigma} = cEN \tag{1}
$$

Figure 1. Observed angular geometries of $B \cdots HC1$ where $B =$ **ethyne, ethene** , **and cyclopropane.**

The electrophilicity *E* of the H end of **HX** and the nucleophilicity *N* of the acceptor region of **B** are related to k_{σ} empirically according to equation (1), where $c = 0.25$ Nm⁻¹ and *E* and *N* are numbers.' By use of this equation, we have been able to reproduce the k_{σ} for a large number of dimers using only a small number of *E* and *N* values. This empirical relationship can be rationalized on the basis of the electrostatic model of the hydrogen bond. It has been shown that the major contribution to equilibrium dissociation energies *(De)* **is** electrostatic and that, moreover, this contribution is controlled mainly by the local interaction between the net charges

Table 1. Observed and calculated force constants k_{σ} / Nm^{-1} for π - and **pseudo-n hydrogen-bonded comp1exes.a**

	Ethyne	Ethene	Cyclopropane	
HCl	$6.4(6.4)$ ^b	$5.9(5.9)^c$	8.0(8.0) ^d	
HCN	$5.2(5.4)$ ^e	$4.5(5.0)^{f}$	$6.3(6.8)$ g	

^aFigures in parentheses are calculated using equation (1). **See text for** discussion. $\frac{1}{2}$ A. C. Legon, P. D. Aldrich, and W. H. Flygare, *J. Chem. Phys.,* **1981,75,625.** *c* **P. D. Aldrich, A. C. Legon, and W. H. Flygare,** *J. Chem. Phys.,* **1981, 75, 2126. A. C. Legon,** P. D. Aldrich, and W. H. Flygare, *J. Am. Chem. Soc.*, 1982, 104, 1486. **e P. D. Aldrich, S. G. Kukolich, and E.** J. **Campbell,** *J. Chem. Phys.,* **1983,** *78,* **3521. f S. G. Kukolich, W. G. Read, and** P. D. **Aldrich,** *J. Chem. Phys.,* **1983,78,3552.** *g S.* **G. Kukolich,** *J. Chem. Phys.,* **1983,** *78,* **4832.**

Table 2. Nucleophilicities **N(B)** of a series of n-acceptors and n-acceptors **B.**

n -Type	N_2 2.2	_{co} 3.4	PH ₃ 4.4	H ₂ S 4.8	HCN 7.3	H ₂ O 10.0	NH ₃ 11.5	
π -Type	5.1	C_2H_2 C_2H_4 4.7	▽a 6.4					
$\sqrt{a} \nabla$ = cyclopropane.								

on the acceptor atom and the active proton.3.4 Since it now appears that, from the limited number of accurate D_e values known,⁵⁻⁻⁸ D_e is almost proportional to k_o , the basis of the empirical relationship **(1)** is evident.

We are now in a position to determine nucleophilicities *N* for $B =$ ethene, ethyne, and cyclopropane from the values of k_{σ} recorded in Table 1 for B \cdots HX, where X = Cl and CN. The k_{σ} in Table 1, like those referred to above, have been determined from centrifugal distortion constants⁹ obtained by analyses of rotational spectra of $B \cdots HX$. We first take $E =$ 5.0 and 4.25 for $X = CI$ and CN obtained by use of equation **(1)** for several series of n-type dimers.1 Then, **N(B)** are available from k_{σ} for B \cdots HCl in Table 1 as follows: $N(\text{ethyne}) = 5.1$, $N(\text{ethene}) = 4.7$ and $N(\text{cyclopropane}) =$ 6.4. Finally, as a check on the validity of these π -type N values, we calculate k_{σ} for all three species $B \cdot \cdot \cdot$ HCN in Table 1 and compare them with observed values. The agreement is satisfactory.

A result of immediate chemical interest is available from the π -type $N(B)$ values. While, as might be expected, ethyne is a slightly stronger nucleophile than ethene, we find the surprising result that cyclopropane is appreciably stronger than both.

Indeed, we note, from the series of both *n*-type and π -type **N(B)** values collected in Table 2, that the order of the limiting gas-phase nucleophilicities of B **is**

$$
N_2 < CO < PH_3 \sim C_2H_4 \sim C_2H_2 < H_2S \sim \nabla < HCN < H_2O.
$$

The above arguments cannot be extended to the π -type series $B \cdot \cdot \cdot HF$ at the moment because the only value of k_a presently available is that for $B = cyclopropane.10$ Further work on the rotational spectra of $B \cdot \cdot \cdot$ HF where $B =$ ethyne and ethene is necessary in order to determine k_{σ} .

We gratefully acknowledge the support of the S.E.R.C. for our work on hydrogen bonding.

Received, 17th March 1987; Corn. 334

References

- 1 **A. C.** Legon and D. J. Millen, *J. Am. Chem. SOC.,* **1987,109,356.**
- **2 A. C.** Legon and D. J. Millen, *Acc. Chem. Res.,* **1987, 20, 39.**
- **3 H.** Umeyama and **K.** Morokuma, *J. Am. Chem. SOC.,* **1977,99, 1316.**
- **4** G. **J. B.** Hurst, **P. W.** Fowler, **A.** J. Stone, and **A.** D. Buckingham, *Int. J. Quantum Chem.,* **1986, 29, 1223.**
- *5* **A.** C. Legon, D. J. Millen, **P.** J. Mjoberg, and **S.** C. Rogers, *Chem. Phys. Lett.,* **1978,** *55,* **157.**
- **6 A. C.** Legon, D. J. Millen, and **H.** M. North, **J.** *Chem. Phys.,* **1987, 86,2530.**
- **7** *A. S.* Pine and **B.** J. Howard, *J. Chem. Phys.,* **1986,84, 590.**
- 8 **A.** C. Legon, D. J. Millen, and **H.** M. North, *Chem. Phys. Lett.,* **1987, 135,303.**
- **9** *D. J.* Millen, *Can. J. Chem.,* **1985, 63, 1477.**
- 10 L. **W.** Buxton, **P.** D. Aldrich, J. A. Shea, **A.** C. Legon, and **W. H.** Flygare, *J. Chem. Phys.,* **1981,** *75,* **2681.**