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Biomimetic Synthesis of (+)-Chrysomelidial, (+)-Dehydroiridodial, and (*)-Iridodial
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Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Treatment of 10-oxocitral (3), a key intermediate for iridoid biosynthesis, with 50% aqueous formic acid yielded
{x)-chrysomelidial (58) and (+)-dehydroiridodial (6), while reduction of (3) or (5) and (6) in 70% aqueous formic acid

with the coenzyme model (8) gave rise to (+)-iridodial (4).

Recently, it has been demonstrated that crude enzyme
extracts from Rauwolfia serpentina cell suspension cultures
convert 10-hydroxygeraniol (1)-10-hydroxynerol (2) into 10-
oxocitral (3) and cyclize (3) to iridodial (4), a pivotal
intermediate in iridoid biosynthesis,! in the presence of
oxidized and reduced pyridine nucleotides (Figure 1). This
communication reports a synthesis of iridodial (4) from
10-oxocitral (3) which mimics the biological cyclization
process.

Formic acid would be expected to catalyse cyclization of
10-oxocitral (3) to iridodial (4) by initial protonation of the 1-
and 10-aldehyde oxygen atoms. This induces nucleophillic
attack of a hydride ion at the C-3 position and formation of the
C-2-C-7 bond. Thus, the following reaction was attempted:
10-oxocitral (3) prepared from citral by SeO, oxidation2 was
dissolved in 50% aquous HCO,H, and the solution was heated
at reflux for 1 h under an Ar atmosphere. The usual work-up
and fractionation by preparative t.l.c. (n-hexane—diethyl
ether, 1:1) gave the oils (£)-(5) (less polar) and (%)-(6)
(more polar) each in 15% yield.

The spectroscopic datat of these substances, together with
their high-resolution mass spectra, are consistent with the
structures of natural chrysomelidial (—)-(5) (the defensive
secretion of Plagiodera versicolora)® and dehydroiridodial,
(—)-(6) (the pungent principle of Actinidia polygama),*
respectively. Compounds (+)-(5) and (*)-(6) are assumed to

T Spectroscopic data: (£)-(5): Apax. (EtOH) 252 nm (g 11 471); Vipay.
(neat) 1720, 1660, 1625 cm~1; 8y (CDCly) 0.89 (3H, d, J 6.9 Hz,
11-Me), 1.42—2.10 (2H, m, 6-H), 2.17 (3H, s, 10-Me), 9.71 (1H, d.
J 0.7 Hz, 3-H), 10.01 (1H, s, 1-H). (£)-(6): Ayax. (EtOH) 252 nm (¢
11 680); Vimax (neat) 1720, 1660, 1625 cm~1; &y (CDCl,) 1.01 (3H, d,
J 7.3 Hz, 11-Me), 1.60—2.20 2H, m, 6-H), 2.17 (3H, s, 10-Me),
9.67 (1H d, J 1.1 Hz, 3-H), 10.01 (1H, s, 1-H).

be formed from (3) via (%)-7,8-dehydroiridodial (7) as shown
in Figure 2. Interestingly, formic acid functioned as a cyclase
mimic, which catalysed formation of the iridane skeleton from
(3) without donation of a hydride ion. This finding prompted
us to synthesize (4) from (3) by adding a coenzyme model as a
hydride ion source. Attempted treatment of (3) with 70%
aqueous HCO,H (5 ml) containing Hantzsch esterS under
various conditions resulted in the formation of only (+)-(5)
and (*)-(6). However, reaction of (3) (0.3 mmol) with 70%
aqueous HCO,H (5 ml) containing the coenzyme model (8)¢
(1.2 mmol) (heating at reflux for 2.5 h) followed by immediate
treatment of the reaction mixture with a 2,4-dinitrophenyl-
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Figure 1. Enzymatic synthesis of iridodial (4).
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Figure 2. Proposed mechanism for chemical synthesis of iridodial (4).
hydrazine reagent gave rise to a hydrazone as orange needles,

m.p. 227°C, in 5% yield. Its physical data} corresponded with
those of the bis-2,4-dinitrophenylhydrazone derived from

¥ Mass: found, M (electron impact) 528.1699; calc. for C,,H,4NgOs:
M, 528.1719; m/z 528 (3%, M+*), 511 (1, M — OH), 498 (1, M — NO),
331 (100, M — PhN,O,), 148 (9, C;0H14N), 81 (24, C¢Hy); Vimax. (KBr)
1680, 1590, 1510, 1330, 1260, 1220, 920, 830 cm~-1.
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synthetic iridodial (4)7 except that the weak i.r. band observed
around 920 cm~1 in the hydrazone of authentic material, was
slightly split in the above hydrazone. Therefore, the reduction
product was considered to be (*)-iridodial (4) contaminated
by its stereoisomer(s). Cyclization to (*)-iridodial (4) was
probably caused by hydride ion attack at the C-3 position of
(3). Since treatment of (£)-(5) and (%)-(6) in a similar manner
to (3) also yielded ()-iridodial (4), another route to (4) via
(£)-(5) and (£)-(6) should also be feasible.
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