Observation of Bridged-Terminal Hydrido Equilibria in a Series of Iron-Platinum Bimetallic Complexes

John Powell,* Michael R. Gregg, and Jeffery F. Sawyer

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S IA ^I

Oxidative addition of Fe(CO)₄PR₂H to Pt(C₂H₄)(PR'₃)₂ gives an equilibrium mixture of (OC)₃Fe(µ-PR₂)(µ-H)Pt(PR'₃)₂ and $(OC)_{3}(H)Fe(\mu-PR_{2})Pt(PR'_{3})$, the first system in which an equilibration between bridge and terminal hydride bonding modes can be observed.

Whilst a large number of transition metal bimetallic and cluster hydrides containing bridging and/or terminal hydrido ligands are known¹ the simple observation of an equilibration between bridge hydrido and terminal hydrido co-ordination modes has not as yet been reported.2 We here describe a series of heterobimetallic hydrido carbonyl Fe-Pt dimers, the first system in which such an equilibration can be observed.

Oxidative addition of the P–H bond in $Fe(CO)₄PR₂H (1)₃$ $[R = Prⁿ, Ph, cyclohexyl (Cy)],$ to zero valent platinum phosphine complexes4 provides a simple route to complexes of the type $(OC)_3Fe(H)(PR_2)Pt(PR'_3)_2$ [(2a) was obtained from the reaction of $(OC)_4FePCy_2Li$ and trans-PtHCl(PEt₃)₂]. In solution these Fe-Pt dimers equilibrate between a bridged hydride structure **(2a--d),** and a terminal hydride form, **(3b--e),** as shown in equation (1). The molecular structures of

> $Fe(CO)$ ₄ PR_2H (1)

the bridged hydrido complex **(2a),** (Figure l), and the terminal hydrido complex *(3c)* (Figure 2) have been determined by single crystal X -ray diffraction. \dagger Although the position of the

 t *Crystal data:* (2a), crystal quality poor, $C_{27}H_{53}FeP_3PtO_3$, $M =$ 769.6, monoclinic, space group $P2_1/c$, $a = 10.010(8)$, $b = 24.695(13)$, $c = 14.152(12)$ \AA , $\beta = 108.50(7)^\circ$, $U = 3317 \text{ Å}^3$, $D_c = 1.54 \text{ g cm}^{-3}$ for $Z = 4$, Mo- $K_{\overline{\alpha}}$ radiation ($\lambda = 0.71069$ Å), $T = 298$ K, μ (Mo- $K_{\overline{\alpha}}$) = 48.6 cm⁻¹. Cell parameters determined using 22 reflections $(6.2 < \theta <$ **14.** 1'). Data collection (Enraf-Nonius CAD4 diffractometer) **01-20** scans, $(0.85 + 0.35 \tan \theta)$ ^o scan ranges, max. scan time = 45 s , max. 2θ $= 44^{\circ}$, quadrants h, k, $\pm l$ gave 4534 data. Three standards collected every **8500** s showed *ca.* **33%** loss in intensities. Lorentz, polarization, crystal decay, and absorption corrections to all data.

(3c), $C_{51}H_{41}FeP_3PtO_3$, *M* = 1045.7, monoclinic, space group *P2*_{*i*}/*c*, *a* = 10.551(2), *b* = 19.049(3), *c* = 24.092(4) Å, β = 98.29(1)°, *U* = **4792** Å³, $D_c = 1.45$ g cm⁻³ for $Z = 4$, Mo- $K_{\overline{\alpha}}$ radiation ($\lambda = 0.71069$ Å), $T = 298$ K, $\mu(\overline{Mo} - K_{\overline{\alpha}}) = 33.9$ cm⁻¹. Cell parameters determined using 25 reflections $(12.6 < \theta < 17.4^{\circ})$. Data collection: ω -2 θ scans, $(0.70 + 0.35 \tan \theta)$ ° scan ranges, max. scan time = 55 s, max. $2\theta = 50$ °, quadrants h , k , $\pm l$ gave 10550 data. Three standards collected every **8500** s showed **35%** loss in intensities. Lorentz, polarization, and corrections for crystal decay. Both structures solved by the Patterson method and refined by least-squares to final agreement indices $R =$ **0.1029 (** $R_w = 0.1224$ **) (2a)** and $R = 0.524$ ($R_w = 0.0658$) **(3c)** using 2189 **(2a)** and 4074 **(3c)** observed $[I > 3\sigma(I)]$ data respectively. Weights given by $4F^2(\sigma^2(I) + (pF^2)^2)^{-1}$ with $p = 0.15$ (2a) or $p =$ 0.065 *(3c).* Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

AS1

	R	\mathbf{R}'	$v(CO)/cm^{-1}$	$J(Pt-H)/Hz$	K	$\Delta H/$ kcal mol -1	<u>,,,,</u> cal deg -1 $mol-1$	$\Delta G/$ $kcal$ mol $-1a$
(2a)	Cy	Et	1945s, 1863m, 1852m	520				
(2b) (3 _b)	Pr	Ph	1961s, 1885m, 1859m 1999s, 1936m, 1922m	417	0.34	2.16	5.22	0.62
(2c) (3c)	Ph	Ph	1966s, 1895m, 1873m 2006s, 1947m, 1928m	256	1.16	1.29	4.71	-0.1
(2d) (3d)	Cy	Ph	1961s, 1883m, 1859m 1998s, 1934m, 1922m	210	2.67	0.095	2.28	-0.58
(3e)	Ph	OPh.	2020s, 1961m, 1943m	28				

Table 1. Spectroscopic and thermodynamic data $(CH_2Cl_2$ or CD_2Cl_2 , 22 °C).

^a1 kcal = 4.184 **kJ.**

Figure **1.** Molecular structure of *(2a)* as determined by single crystal X-ray diffraction. Selected bond lengths (A) : Pt-Fe, 2.800(4); Pt-P(1), 2.321(7); Pt-P(2), 2.295(7); Pt-P(3), 2.311(7); Fe-P(3), 2.203(8). Selected bond angles **(O):** Fe-Pt-P(l), 107.0; Fe-Pt-P(2), 153.2; Fe-Pt-P(3), 49.9; Pt-Fe-P(3), 53.4; Pt-Fe-C(l), 110; Pt-Fe-C(2), 116; Pt-Fe-C(3), 118; C(l)-Fe-C(2), 91; C(l)-Fe-C(3), 93; C(2)-Fe-C(3), 121. The position of the hydride ligand (not determined) is assumed to be bridging Fe-Pt and approximately trans to P(2).

hydride ligand was not determined in either structure, the location of the hydride ligand as shown in Figures 1 and 2 may be inferred from (i) the disposition of the other ligands; (ii) the similarity of the solid and solution i.r. spectra $[v(CO)$ region] (Table 1); and (iii) the solution H n.m.r. data for the hydride ligand (Table 1 and footnote \ddagger). $J(^{195}Pt^{-1}H)$ data are particu-

Figure 2. Molecular structure of **(3c)** as determined by single crystal X-ray diffraction. Selected bond lengths (A) : Pt-Fe, 2.698(2); Pt-P(1), 2.323(3); Pt-P(2), 2.269(3); Pt-P(3), 2.247(3); Fe-P(3), 2.167(4). Selected bond angles *(O):* Fe-Pt-P(l), 99.3; Fe-Pt-P(2), 155.6; Fe-Pt-P(3), 51.0; Pt-Fe-P(3), 53.7; Pt-Fe-C(l), 100; Pt-Fe-C(2), 94.9; Pt-Fe-C(3), 150.9; C(1)-Fe-C(2), 97.4; C(1)-Fe-C(3), 101.6; C(2)-Fe-C(3), 101.3. The position of the hydride ligand (not determined) is assumed to be approximately trans to $C(2)$.

larly diagnostics being *ca.* 520 Hz for bridging hydride *[e.g.* (2a)l and *ca.* 28 Hz for the terminal (Fe) hydrido isomer *[e.g.* (3e)]. Complexes in which both terminal and bridged isomers are present in solution exhibit $v(CO)$ signals attributable to both isomers and values of $J(^{195}Pt-1H)$ (fast exchange limit) in between those of (2a) and **(3e)** (Table 1). On going from the bridged hydrido structure [(2a), Figure **11** to the terminal hydrido structure, $[(3c)$, Figure 2] the major changes are (i) the disposition of the hydride ligand: approximately perpendicular to the FePtP, plane in *(3c)* as opposed to in the plane in (2a); (ii) the Fe-Pt bond length is *ca.* 0.10 **8,** shorter in *(3c);* and (iii) the geometry about the Fe in *(3c)* is pseudo octahedral as opposed to pseudo trigonal bipyramidal in (2a) $[e.g. \angle C(2)$ -Fe-C(3) is $101(1)$ ° in *(3c)* and $121(1)$ ° in *(2a)* and \angle Pt-Fe-C(3) is 118(1)^o in (2a) and 151(1)^o in (3c)]. The observed distortions from a regular geometry about Fe in both (2a) and **(3c)** are consistent with those observed in other hydride systems.6

^{*} Selected spectroscopic *data:* 1H and 31P n.m.r. (p.p.m. relative to 85% H3P0,) 6 (CD,C12), *J* in Hz. **(2a):** hydrido region: **6** (H) 12.25 $[Fe(\mu-H)Pt, 1:4:1, t of dd, J(PransH) 78, J(PcisH) 18, 32,$ $J(^{195}Pt-H)$ 520]; $^{31}P(^{1}H)$: δ 223 [µ-phosphido, 1:4:1, t of dd, $J(31P-31P)$ 205, 12, $J(195Pt-31P)$ 1811], 12 [PtransH, 1:4:1, t of dd, $J(31P-31P)$ 12, 18, $J(195Pt-31P)$ 3585], 12 [PcisH, 1:4:1, t of dd, J(31P31P) 18, 205, J(195Pt-31P) 23421. **(3e):** hydrido region: 6(H) 12.03 [Fe-H, 1:4:1, t of ddd, $J(\mu$ -phosphido-H) 57, $J(31P-H)$ 8.8, 5.8, J(l95Pt-H) 281; 31P{lH}: **6** 172 [pphosphido, 1 : 4: 1, t of dd, $J(31P31P)$ 28, 328, $J(195Pt-31P)$ 2326], 137 [Ptrans-u-phosphido, 1:4:1, t of dd, $J(31P-31P)$ 4328, $J(195Pt-31P)$ 5152], 124 [Pcis-uphosphido, $1:4:1$, t of dd, $J(31P-31P)$ 4, 28, $J(195Pt-31P)$ 5514].

The observed co-ordination geometry at Fe (Figure 1) and $v(CO)$ data for the bridged hydrido isomer (2) (Table 1) are reasonably consistent with the Pt^{II}Fe⁰ structural representation (I). The observed bridged hydrido-terminal hydrido equilibration $[equation (1)]$ may be regarded as an intramolecular redox isomerism with the terminal hydrido structure **(3)** having a more oxidized Fe and reduced Pt as indicated by the representation **(11).** Oxidation of Fe is indicated by the observed blue shift of **v(C0)** of **(3)** (50-100 cm-1) and the pseudo octahedral co-ordination of Fe in **(3)** (Figure **2). As** might be expected the relative amount of the terminal hydride **(3)** and the extent of Fe oxidation **[v(CO)** blue shift of **(3)** relative to (2)] are very sensitive to the nature of the ligands bonded to Pt. **A** ligand capable of stabilizing Pt in a low oxidation state $[e.g. P(OPh)₃, complex (3e)]$ results in only the terminal hydride being observed and a blue shift of $v(CO)$ of $ca. 100 \text{ cm}^{-1}$ relative to (2a) is not inconsistent with the Fe^{IIPt₀</sub>} representation (II), whilst for the good donor phosphine $PEt₃$ only the bridged hydrido FeoPt" complex **(2a)** is observed.

For the systems where both bridged and terminal hydrido forms are readily observed $\{(2b-d) \rightleftharpoons (3b-d)\}$ the rate of $(2) \rightleftharpoons (3)$ interchange is still rapid on the ¹H n.m.r. time scale at -90° C [estimated E_a for bridge \rightleftarrows terminal exchange ≤ 6 kcal/mol; 1 kcal = 4.184 kJ]. Using the observed $J(195Pt-1H)$ values of the totally bridged (2a) and the totally terminal **(3e)** as typical of the two structural forms the observed average $J(^{195}Pt-1H)$ (hydride) for the systems $(2b-d) \rightleftharpoons (3b-d)$ can be utilized to determine the equilibrium constant [equation (1)] at a particular temperature. Values of K (22 \degree C) and thermodynamic data are given in Table 1. For the systems where both isomers are observable, the terminal hydrido isomer **(3b-d)** is the favoured high temperature form. The enthalpy difference between the two isomeric forms is very small. The data suggest that the bridge-terminal hydrido rearrangement can best be considered in terms of an intramolecular redox isomerization process. Further studies have shown the bridge to terminal rearrangement of the hydride ligand to be a significant step in cluster aggregation in the formation of FePt₂ and FePt₃ clusters.⁷

We are grateful to the Natural Science and Engineering Research Council of Canada for financial support of this work.

Received, 4th December 1986; Com. 1729

References

- **A. P. Humphries and H. D. Kaesz,** *Prog. Znorg. Chem.,* **1979,25, 145.**
- **A bridge-terminal-bridge rearrangement has been proposed to** account for hydride scrambling in $H_4Ru(CO)_{10}(Ph_2PCH_2PPh_2)$: J. **R. Shapley, S. I. Richter, M. R. Churchill, andR. A. Lashewycz,** *J. Am. Chem. Soc.,* **1977,** *99,* **7384.**
- 3 P. M. Treichel, K. W. Dean, and W. M. Douglas, *Inorg. Chem.*, **1972, 11, 1609.**
- **F.** *G.* **A. Stone,** *Znorg. Chim. Acta,* **1981,** *50,* **33 and references therein.**
- **J. Powell,** J. **F. Sawyer, and** M. **V. R. Stainer,** *J. Chem. SOC., Chern. Commun.,* **1984, 1314.**
- 6 M. Cygler, F. R. Ahmed, A. Forgues, and J. L. A. Roustan, *Inorg. Chem.,* **1983, 22, 1026.**
- **J. Powell, M. R. Gregg, and** J. **F. Sawyer, unpublished results.**