Phosphine Complexes of Main Group Elements. A Bis-phosphinomethyl Lithiate as an Anionic Diphosphine Ligand to Lithium: Synthesis and Structure of { **[Me2N(CH2)2NMe21Li[(Me2P)C(SiMe&12Li}**

Hans H. Karsch," Armin Appelt, Brigitte Deubelly, and Gerhard Miiller"

Anorganisch-Chemisches Institut, Technische Universitat Miinchen, Lichtenbergstr. 4, 0-8046 Garching, Federal Republic of Germany

A novel type of Li complexation has been established by X-ray crystallography for the title compound revealing two distinctly different Li atoms, whereas the related complexes $\{(thf)Li[(Me_2P)_2CX]\}_2$ (X = SiMe₃, PMe₂; thf = tetrahydrofuran) feature equivalent environments for both lithium atoms.

During our investigations of phosphine complexes of main group elements, we showed that anionic phosphine ligands such as phosphinomethanides **(1)** and phosphinomethyl aluminates **(2)** are versatile ligands for the formation of a wide variety of neutral main group phosphine complexes, which are stable towards hard donor solvents (amines, ethers).¹ The anionic ligands are normally prepared as their lithium 'salts,' so their interaction with Li^{+} in the solid state is particularly interesting. Moreover reports of alkali metal phosphine complexes are rare.

In initial studies we found that anions (1a, $n = 2$, $R =$ SiMe₃; **b**, $n = 3$) act as chelating ligands to $[Li(thf)] + (thf =$ tetrahydrofuran) with an additional π -heteroallyl type interaction completing the Li co-ordination sphere in the dimeric molecule **(3a, X** = SiMe₃; **b**, X = PMe₂).^{1a,d} In **(4)**,^{1b} a six-membered ring is formed *via* phosphinomethyl bridges between an (anionic) aluminate and a (cationic) lithium co-ordination centre.

The unique P and C interaction of Li+ in **(3)** prompted us to investigate systematically the co-ordination behaviour of differently substituted phosphinomethanides to Li, particularly in view of Eaborn's discovery that $[C(SiMe₃)₃]$ coordinated to Li⁺ to form the lithiate anion $\{Li[C(SiMe₃)₃]₂\}$ *(5).2* **A** phosphinomethyl lithiate, if isolable, might behave as an anionic phosphine ligand towards Li+ and thus might function as a link between the phosphinomethyl aluminate **(4)** and the lithiate *(5).*

$$
\begin{array}{ccc}\n(\text{Me}_2\text{P})(\text{SiMe}_3)_2\text{CH} & \xrightarrow{1} & \{\text{Li}[\text{C}(\text{PMe}_2)(\text{SiMe}_3)_2]\}_2(\text{L}) \\
(\text{6}) & (7)\n\end{array}
$$

 $L = Me₂N(CH₂)₂NMe₂(tmeda)$

Scheme 1. *Reagents:* i; Bu^tLi, pentane, tmeda.

Figure 1. Molecular structure of **(7)** (ORTEP, thermal ellipsoids at the 50% probability level, without H-atoms). Principal distances (A) and angles (°) are: Li(1)-P(1) 2.716(9), Li(1)-P(2) 2.72(1), Li(1)-N(l) 2.24(1), Li(1)-N(2) 2.20(1), Li(2)-P(1) 2.88(1), Li(2)-P(2) 2.92(1), Li(2)–C(1) 2.17(1), Li(2)–C(2) 2.16(1), Li(1) \cdots Li(2) 3.55(2), C(1)-P(1) 1.780(5), C(2)-P(2) 1.790(5), C(1)-Si(1) 1.848(6), C(1)-Si(2) 1.850(5), C(2)-Si(3) 1.853(6), C(2)-Si(4) 1.833(5); P(1)-Li(1)-P(2) 106.1(3), C(1)-Li(2)-C(2) 167.4(7), Li(1)-P(1)-C(1) 121.5(3), Li(1)-P(2)-C(2) 120.7(3), P(1)-C(1)-Li(2) 92.9(4), P(2)- $C(2)$ -Li (2) 94.8(4).

Facile deprotonation of the parent phosphine **(6)3** with BufLi yielded **(7),** which was isolated as colourless crystals from pentane (Scheme 1).[†] In dimeric (7),^{\ddagger} one Li atom bridges the carbanion centres $C(1)$ and $C(2)$ of two anions, without carrying additional donor molecules (Figure 1). The Li–C bonding distances $[2.17(1)$ and $2.16(1)$ Å] compare well with those in (5) $[2.16(1)$ and $2.20(1)$ \AA .² The bis(phosphinomethy1)lithiate thus formed acts as a chelating phosphine ligand to the second lithium atom, which completes its distorted tetrahedral co-ordination sphere with one molecule of tmeda. The entire dimer possesses approximate C_2

symmetry, the planes $P(1)$, $Li(1)$, $Li(2)$, $P(2)$ and $C(1)$, $Li(2)$, Li(1), $C(2)$ being skewed by 16.2°. Thus the molecular structure of **(7)** combines features of both **(4)** (phosphine co-ordination to Li) and *(5)* (lithiate formation) within the same molecule and with different co-ordination modes of the two Li atoms. It should be noted that **(7)** is formed even with excess of tmeda, which distinguishes it from the related centrosymmetric dimer $[(tmeda)LiCH₂(PMe₂)]₂$, where both Li atoms bridge one C and one P donor in a head-to-tail fashion giving a six-membered ring, with *both* metal atoms also being co-ordinated by one molecule of tmeda.4 The co-ordination mode observed in **(7)** has some distinct geometrical implications which deserve comment. (i) The angle at Li(2), formed by the two carbanionic C atoms, deviates from linearity [167.4(7)^o] whereas in (5) strict linearity was observed. This nonlinearity must be caused by the geometrical requirements of the six-membered ring as formed by the Li-P co-ordination. (ii) The distances from $Li(2)$ to the phosphine centres P(1) and P(2) are longer by only 0.2 Å than those from Li(1). In a sense, the equalization of the Li-P distances in **(7)** may be described as a novel bridging co-ordination mode of a tertiary phosphine centre between two metal atoms.§ In accordance with a more ionic description of the bonding in organolithium compounds⁶ the observed overall geometry of **(7)** should be predominantly governed by the propensity to aggregation of Li+ and anion, and the steric requirements of the substituents. The marked difference from **(3)** and *(5)* shows, however, that a delicate balance between these influences and the overall co-ordination mode at the lithium centre(s) is observed. In **(7)** the different Li-P interactions, which should be largely ion-dipole in character, are apparently optimized by the observed bond length equalization.

Finally the structure of **(7)** indicates, at least in principle, that phosphinomethyl lithiates **(8)** may act as anionic phosphine ligands to main group elements in a similar way to phosphinomethanides **(1)** or phosphinomethyl aluminates **(2).** In contrast with the only lithiate hitherto known, *i.e.* the salt-like compound *(S),* the additional P co-ordination to a cationic Li+ in **(7)** gives rise to a neutral, cyclic molecule of the betaine type.

Received, 23rd January 1987; Corn. 092

References

- (a) H. H. Karsch, L. Weber, D. Wewers, R. Boese, and G. Miiller, *Z. Naturforsch., Teil B,* 1984, 39, 1518; (b) H. H. Karsch, A. Appelt, and G. Muller, *Organometallics,* 1985, 4, 1624; (c) H. H. Karsch and A. Appelt, *J. Organomet. Chem.,* 1986, 312, C6, and references cited therein; (d) H. H. Karsch and G. Miiller, unpublished results.
- C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, *J. Chem. SOC., Chem. Commun.,* 1983,827.
- H. H. Karsch, A. Appelt, B. Deubelly, and G. Miiller, work to be published.
- **L.** M. Engelhardt, G. E. Jacobsen, C. L. Raston, and A. **H.** White, *J. Chem. SOC., Chem. Commun.,* 1984,220.
- P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk, and N. G. Rondan, *J. Am. Chem. SOC.,* 1984, 106,6467.
- W. N. Setzer and P. v. R. Schleyer, *Adv. Organomet. Chem.,* 1985, 24, 353, and references cited therein.
- H. D. Flack, *Acta Crystallogr., Sect. A,* 1983, 39, 876.

^{&#}x27;r Satisfactory C, **H,** and Li microanalyses were obtained.

 \ddagger *Crystal data* for (7): $C_{24}H_{64}Li_2N_2P_2Si_4$, $M = 568.96$, orthorhombic, space group $P2_12_12_1$, $a = 9.091(2)$, $b = 18.392(2)$, $c = 22.917(3)$ Å, U $= 3831.8 \text{ Å}^3$, $D_c = 0.986 \text{ g/cm}^3$, $Z = 4$, $\mu(\text{Mo-}K_{\alpha}) = 2.5 \text{ cm}^{-1}$. 7434 Reflections were measured on an Enraf-Nonius CAD-4 diffractometer, Mo- K_{α} radiation, $\lambda = 0.71069$ Å, graphite monochromator, $T = 23$ °C, of which 6725 were unique and 3575 'observed' ($\Delta \omega = 0.95$) + 0.35 tan θ , (sin θ/λ)_{max} = 0.594, +h, +k, ±l). Solution by direct methods (SHELXS-86). Refinement gave $R = 0.054$, $R_w = 0.039$, *w* $= 1/\sigma^2$ (F_o) for 307 refined parameters. Enantiopol refinement according to Flack⁷ gave $x = 0.09(19)$. $\Delta \rho_{fin}$ (max/min) = +0.45/ -0.42 e/ \AA ³. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

⁸ It is interesting to note that the P-C bond bridging by Li(2) as observed in **(7)** is very similar to that predicted theoretically for the $LiCH₂PH₂ monomer.⁵$