Construction of Contiguous Quaternary and Tertiary Carbon Centres *via* the Asymmetric Michael Reaction

Kiyoshi Tomioka, Kōsuke Yasuda, and Kenji Koga*

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Michael reactions of chiral lithioenamines of α -alkyl β -oxo esters with methyl ethylidenemalonate afforded, after hydrolysis, adducts having contiguous quaternary and tertiary carbon centres, with nearly complete enantio- and diastereo-selectivity.

Control of absolute and relative stereochemistry in the formation of contiguous chiral carbon centres *via* Michael reactions has been of recent interest.¹ Although the Michael reaction has been shown to be effective in the stereocontrolled

formation of contiguous tertiary carbon centres,²⁻⁻⁴ no method which creates contiguous quaternary and tertiary carbon centres with high selectivity has been developed. We now describe such a method, proceeding with high enantio-

 Table 1. Representative results.

Run	(1)/(2)	Solvent	Ligand (equiv.)	Major product	$[\alpha]_{D}(CHCl_{3})(^{\circ})$	(4):(5)	E.e.(%) ^a	Yield (%)
1	(2a)	THF	None	(4 a)	+5.89	30:1	99	54
2	(2a)	Toluene	None	(4a)	+4.96	13:1		72
3	(2a)	Toluene	THF(1)	(4a)	+5.54	43:1		79
4	(2a)	Toluene	$PO(\dot{NMe}_2)_3(2)$	(4a)	+5.72	200:1	99	94
5	(2b)	THF	None	(4b)	+107	200:1	99	87
6	(2 b)	Toluene	$PO(NMe)_3(2)$	(4b)	+107	200:1	99	86
7 ^b	(1 a)	Toluene	$PO(NMe)_3(2)$	(5a)		1:3		49
8c	(1a)	EtOH	None	(4a) + (5a)		1:1		45
9c	(1b)	EtOH	None	(4b)		4:1		76

^a Enantiomeric excess. ^b LiNPrⁱ₂ used as base; reaction temperature -20 °C. ^c K₂CO₃ used as base; reaction temperature 25 °C. ^b c Products were racemic.

and diastereo-selectivity, involving the use of chiral enamines of α -alkyl β -oxo esters as Michael donors.⁵

The reaction of the lithioenamine (2a) prepared from the oxo ester (1a) and L-valine t-butyl ester,⁵ with methyl ethylidenemalonate (3) in the presence of hexamethylphosphoramide (2 equiv.) in toluene at -78 °C proceeded smoothly to afford, after hydrolysis, the adduct (4a) as sole product (run 4).[†] Representative results are summarized in Table 1. The stereochemistry of (4a) was determined by conversion into the lactone (6) [i, (HOCH₂)₂, p-MeC₆H₄ SO₃H/C₆H₆, 73%; ii, NaCN/Me₂SO, 73%; iii, KOH/aq. EtOH; iv, ClCO₂Et/THF (tetrahydrofuran), then NaBH₄, 66%; v, KH/THF, 87%; vi, *p*-MeC₆H₄SO₃H/Me₂CO, 66%], identical with the compound prepared from (R)- $(7)^6$ (i, LiNPrⁱ₂/MeI/PO(NMe₂)₃/THF, 70%; ii, LiNPrⁱ₂/AcCN/ $PO(NMe_2)_3/THF$, 62%). The enantio- and diastereoiso-meric purities were also determined by ¹H n.m.r. in the presence and in the absence of the shift reagent $Eu(hfc)_3$, ‡ The reaction of the cyclic enamine (2b) with (3) also afforded enantio- and diastereoiso-merically pure product (4b) (runs 5 and 6). The absolute stereochemistry was determined by conversion into (*R*)-(8)⁷ [i, aq. HCl/AcOH; ii, CH₂N₂, 43%; iii, (HSCH₂)₂, BF₃OEt₂/CH₂Cl₂, 84%; iv, LiAlH₄/THF, 91%; v, Raney Ni/EtOH, 41%]. The relative stereochemistry of (4b) was determined by correlation with the known compound (9)⁸ [from (\pm)-(4b; X = CO₂Bu¹):§ i, CF₃CO₂H, then heat, 89%; ii, AcCl/Ac₂O; iii, MeLi/THF; iv, *p*-MeC₆H₄SO₃H/C₆H₆, 20%].

The stereochemical outcome of the reaction of the α -alkyl β -oxo esters (**1a** and **b**) with (**3**) is of interest. As shown in Table 1 (runs 7—9), poor diastereoselectivity was obtained, demonstrating the advantage of the lithioenamine reaction in terms of both enantio- and diastereo-selectivity.

The high enantio- and diastereo-selectivity exhibited by the lithioenamine reaction may be attributed to the properties of the intermediate structure (10); the reagent (3) will attack the chiral lithioenamine (2) from the α -face as a result of initial co-ordination of the carbonyl oxygen of (3) to the lithium cation of (2), placing the methyl substituent in the less sterically demanding region.

Since the chiral lithioenamines (2) are readily available, the present procedure may provide a simple and practical approach to the construction of contiguous quaternary and tertiary carbon centres.¶

Received, 24th April 1987; Com. 554

References

- 1 K. Tomioka and K. Koga, in 'Asymmetric Synthesis,' ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, ch. 7.
- 2 Enantioselective reactions: E. J. Corey and R. T. Peterson, *Tetrahedron Lett.*, 1985, 26, 5025; M. Yamaguchi, K. Hasebe, S. Tanaka, and T. Minami, *ibid.*, 1986, 27, 959; D. Enders, K. Papadoulos, and B. E. M. Rendenbach, *ibid.*, 1986, 27, 3491.
- Diastereoselective reactions: C. H. Heathcock and D. E. Uehling, J. Org. Chem., 1986, 51, 279, and references cited therein; M. Yamaguchi, M. Tsukamoto, and I. Hirao, Tetrahedron Lett., 1985, 26, 1723, and references cited therein; Y. Yamamoto, S. Nishii, and K. Maruyama, J. Chem. Soc., Chem. Commun., 1985, 386; T. Mukaiyama, M. Tamura, and S. Kobayashi, Chem. Lett., 1986, 1817.
- 4 Addition-alkylation sequences: K. Tomioka, K. Yasuda, H. Kawasaki, and K. Koga, *Tetrahedron Lett.*, 1986, **27**, 3247 and references cited therein.
- 5 K. Tomioka, K. Yasuda, and K. Koga, *Tetrahedron Lett.*, 1986, 27, 4611, and references cited therein.
- 6 J. B. Jones and K. P. Lok, *Can. J. Chem.*, 1979, **57**, 1025, and see ref. 4.
- 7 K. Tomioka, T. Suenga, and K. Koga, *Tetrahedron Lett.*, 1986, 27, 369.
- 8 J. A. Marshall and T. M. Warne, Jr., J. Org. Chem., 1971, 36, 178.

§ The diastereoisomerically pure (\pm)-(**4b**) (X = CO₂Bu^t), prepared by the reaction of (**1b**) and (**3**; X = CO₂Bu^t) followed by recrystallization, was converted into (**4b**; X = CO₂Me) (CF₃CO₂H, then CH₂N₂; 91%).

[†] All new compounds described here provided satisfactory analytical and spectroscopic data.

[‡] Two separate peaks for the quaternary methyl group appeared in the presence of the chiral shift reagent.

[¶] Typical experimental procedure (run 4 of Table 1). To a cooled (-78 °C) solution of lithium di-isopropylamide (13 mmol) in toluene (30 ml) was added a solution of (**2a**) (13 mmol) in toluene (20 ml). After stirring for 1 h at -78 °C, hexamethylphosphoramide (26 mmol) was added. After stirring for another 1 h, the malonate (3; X = CO₂Me) (10 mmol) in toluene (20 ml) was added and the whole was stirred for 1.5 h. After the addition of aq. 20% HCl (100 ml), the mixture was stirred for 4 h at room temperature. Extractive work-up followed by silica gel column chromatography [hexane-ethyl acetate (10:1)] afforded (**4a**) (94%).