Transient Photochemistry of (q5-CyclopentadienyI)bis(ethene)rhodium

Simon T. Belt,^a David M. Haddleton,^a Robin N. Perutz,*^a Brian P. H. Smith,^a and Andrew J. Dixon^b

^a*Department of Chemistry, University of York, York YO7 SDD, U.K.*

^b*Department of Chemistry, University of Nottingham, Nottingham NG7 ZRD, U.K.*

On laser flash photolysis, using both u.v.-visible and i.r. detection, of CpRh(C₂H₄)₂ (Cp = η^5 -C₅H₅) in hydrocarbon solutions, two transients are detected, **A** and B; **A** is assigned **as** CpRh(C2H4) (probably a triplet state) and decays to products and B *via* first-order kinetics $[k = (1.0 \pm 0.5) \times 10^6 \text{ s}^{-1}]$; B $[CpRh(C₂H₄)S, S = solvent]$ reacts with incoming ligands *via* second-order saturation kinetics with a strong solvent dependence.

The trio of methods, matrix isolation, product studies in solution, and flash photolysis form a powerful combination for understanding the mechanisms of photosensitive organometallic systems. Combined studies of this type have been confined to a few metal carbonyls and Cp_2MoH_2 (Cp = η ⁵-C₅H₅).^{1,2} We recently reported studies of the photochemistry of $CpRh(C₂H₄)$, by product analysis in hydrocarbon and liquid xenon solution, and by matrix isolation, which showed the dominant photoprocess to be dissociation of C_2H_4 , 3,4 The reactive intermediate, $C_2Rh(C_2H_4)$, was detected by i.r. and u.v.-visible spectroscopy, and shown by magnetic circular dichroism to have a diamagnetic (singlet) ground state.3.5 The resulting vacancy may be filled by another donor ligand *(e.g.* CO) or by oxidative addition (e.g. of Et3SiH). In contrast, ethene dissociation competes with

Figure 1. (a) Kinetic trace showing the rise *(<50* ns) and decay of transient **A** monitored at 425 nm, following flash photolysis of **(1)** *(5* X 10^{-3} mol dm⁻³) in C_6H_{12} under C_2H_4 . The inset represents the corresponding first-order plot. The fluorescence of the sample and optics have been subtracted using a full data set of 2000 points. The first-order plot shows slight curvature over the initial 300 ns corresponding to the fluorescence time. (b) Kinetic traces showing the decay of **A** (+) monitored at 425 nm and the simultaneous rise of B *(0)* at 360 nm. These plots show data reduced to 250 points without fluorescence subtraction.

1347

isomerisation to a vinyl hydride for $CpIr(C_2H_4)_2$.⁶ We report a mechanistic study of the photochemistry of $CpRh(C_2H_4)$ in hydrocarbon solutions using laser flash photolysis with u.v. visible and i.r. detection.

Laser flash photolysis† of $CpRh(C_2H_4)_2(1)$, in cyclohexane under 1 atm of any of Ar, C_2H_4 , CO, N₂, CH₄, CO₂, or H₂, yields a transient absorption monitored at 425 nm, which rises in \le 50 ns and decays in *ca*. 5 µs (Figure 1a). Similar behaviour is observed when cyclohexene and Et₃SiH are the added substrates under an Ar atmosphere. This transient, A, decays *via* good first-order kinetics $(k = 1.0 \pm 0.5 \times 10^6 \text{ s}^{-1})$ over *ca*. **4** half lives. The rate constant is independent of added substrate, concentration of (1) $(10^{-3}$ to 8×10^{-3} mol dm⁻³), and solvent (C_6H_{12}, C_6H_6) within the experimental error limits. The decay of A at 425 nm is accompanied by a simultaneous rise in absorption at 360 nm, which occurs at the same rate as the decay of **A** to within 10% for any given sample (Figure 1b). A point-by-point $u.v.-visible$ spectrum of A obtained 1 μ s after the laser flash of (1) in C_6H_{12} under CO $(\lambda_{\text{max}} 410 \pm 10 \text{ nm}, \text{Figure 2a})$ is close to that obtained by matrix isolation of $CpRh(C_2H_4)$ (420 nm in Ar, 399 nm in $CH₄$). \ddagger

The second transient, B, formed from A, is stable over microseconds but decays over milliseconds (Figure 2b). The decay is again first-order in transient and independent of $[(1)]$, but is strongly dependent on added substrate (see Scheme 1) and solvent.§ For any given substrate, k_{obs} is *ca.* 100 times smaller in C_6H_6 than in C_6H_{12} . A point-by-point u.v.-visible absorption spectrum of B was obtained $400 \mu s$ after the laser flash of (1) in C_6H_{12} under C_2H_4 (Figure 2a, λ_{max} 345 \pm 5 nm). When the u.v.-visible spectra of solutions of (1) in C_6H_{12} were monitored before and after *ca.* 250 flashes, we found the system to be reversible under C_2H_4 , but new products were formed with other substrates.

Closer examination of the effect of substrate $(L = Et₃SiH,$ C_6H_{10}) on the decay rate of B shows it to be linear in [L] at low [L] but saturating to a limiting rate at higher [L] (Figure 3).7

f We have remeasured the matrix U.V. spectra. These values are revised from ref. 3.

§ Transient B was unaffected by H_2O . The rate of decay in the presence of C_2H_4 changed by only 2.5% between dried solvent and solvent containing $0.1 \text{ M H}_2\dot{\text{O}}$. The rate of reaction under CH₄ was very similar to that under Ar, indicating the absence of **C-H** oxidative addition.

7 Since we are limited to 1 atm pressure for gaseous **L,** this effect was only observed for $L = Et_3SiH$ or C_6H_{10} .

⁷ For U.V. detection (in York) the laser flash at 308 nm (EMG-50 Excimer laser) lasted *ca.* 25 ns. Pulse energy was reduced to *ca. 5* mJ per pulse with neutral density filters. The transients were detected *via* an Applied Photophysics laser kinetic spectrophotometer and a Gould 4500 digital oscilloscope. The minimum detectable risetime is *ca.* 50 ns. Transient signals were averaged over 16 flashes. The apparatus for flash photolysis with i.r. detection (in Nottingham) is described in ref. 7, but the flash lamp was replaced by a laser (also 308 nm).

Figure 2. (a) Point-by-point u.v.-visible difference spectra obtained 1 (\bullet) and 400 (\times) us after the laser flash of (1) in C₆H₁₂. The spectrum after 1 **ps** is chiefly of A with some contribution from B below 370 nm. The spectrum after 400 **ps** is due to B. The arrows mark the absorption maxima of CpRh(C₂H₄) in CH₄ and Ar matrices. (b) Kinetic trace and first-order plot for the decay of transient B in C₆H₁₂ under 1 atm C_2H_4 . (c), (d) Kinetic traces with i.r. detection showing the two-stage formation of $CPRh(C_2H_4)CO$ in n-heptane under (c) 1.5 atm CO, (d) a reduced pressure of CO (v_{mon} . 1990 cm⁻¹), note change of timescale.

Figure 3. Curved plots (left hand ordinate axis): dependence of the observed first-order decay of transient B, **kobs.,** on concentration of added substrate [L] (\blacksquare for Et₃SiH and \blacksquare for C₆H₁₀ respectively). Linear plots (right hand ordinate axis): dependence of [L]/ $k_{obs.}$ on [L] [see equation (2), $Et_3SiH \square$, C_6H_{10} O].

Scheme 1 takes account of the kinetic saturation, the u.v.-visible spectra of **A** and B, the identification of stable products,3.4 and the solvent effect. According to Scheme 1, k_{obs} is given by equation (1), which may be rearranged to equation (2). From a plot of $[L]/k_{obs}$, *vs.* $[L]$ for C_6H_{12} solutions, k_1 is determined to be 1330 \pm 30 (Et₃SiH) and 1450 \pm 100 s⁻¹ (cyclohexene) showing excellent agreement between ligands as Scheme 1 requires (Figure 3). In contrast, for solutions in benzene, k_1 was found to be 4.1 \pm 0.1 s⁻¹ (L = Et₃SiH). Transient B is therefore assigned as $CpRh(C_2H_4)S$ **(S** = solvent). From the intercepts of these plots the ratio k_{-1}/k_2 is found to be $(6 \pm 4) \times 10^{-4}$ and $(9 \pm 3) \times 10^{-4}$ for C_6H_{10} and Et₃SiH respectively, showing a surprisingly large preference for ligand attack over solvation by $CpRh(C_2H_4)$. Confirmation of the stability of $CpRh(C_2H_4)$ (η^2 -arene) complexes is obtained by photolysing (1) in toluene at -60° C. A stable pink colour develops with λ_{max} 339 and 507 nm (relative intensities 28 : 1) which disappears slowly on warming.

$$
k_{\text{obs.}} = k_2 k_1 [L] / (k_2 [L] + k_{-1} [S]) \tag{1}
$$

$$
[L]/k_{\text{obs.}} = [L]/k_1 + k_{-1}[S]/k_1k_2 \tag{2}
$$

Time-resolved i.r. spectroscopy7 has been used to monitor the formation of $CpRh(C_2H_4)CO$ ($v_{\text{mon.}}$ 1990 cm⁻¹) by

Scheme 1. Transient photochemistry of $CpRh(C_2H_4)_2$.

photolysis of **(1)** in n-heptane when CO is the added substrate. C_2H_4)CO is formed by two processes under 1.5 atm of CO: 80% of the product is formed rapidly $(\leq 1 \,\mu s)$ while 20% is formed slowly $(\sim 4 \text{ ms}, \text{Figure } 2c)$. The fast process corresponds to direct product formation from unsolvated $CpRh(C₂H₄)$; the slow process involves prior formation of B (Scheme 1). From the proportion of product formed rapidly and the concentrations of CO (1.6 \times 10⁻² mol dm⁻³) and solvent (6.8 mol dm⁻³), k_{-1}/k_2 is determined to be 5×10^{-4} in agreement with the results above. The i.r. kinetic traces under lower CO pressure are consistent with this model: (i) the proportion of product formed rapidly is greatly reduced, (ii) the rate of the slow process is decreased by a factor of ~ 5 (Figure 2d).

We propose that A is $CpRh(C₂H₄)$, probably in a triplet state, and that A reacts to form either $B \left[CpRh(C_2H_4)S \right]$ or other products via a very short-lived singlet state (Scheme 1). This three-intermediate scheme has been confirmed by kinetic modelling. Calculations carried out on the analogous CpRhCO fragment suggest that the singlet and triplet states have similar energies, but different Cp-M-CO angles.⁸ Matrix isolated $CpRh(C₂H₄)$ may correspond to intermediate A or the undetected singlet $CpRh(C_2H_4)$, but the m.c.d. evidence supports the latter identification.

These experiments provide detailed kinetic characterisation of an unsaturated non-carbonyl organometallic. The application of the powerful combination of flash photolysis with both U.V. and i.r. detection reveals: (i) two intermediates, both intimately involved in product formation and (ii) the importance of specific solvation for one. of the intermediates [compare \dot{M} (CO)₅S, M = Cr, Mo, W].¹

We acknowledge the advice of Dr. M. Poliakoff and the support of S.E.R.C., the Royal Society (Paul Instrument Fund), Applied Photophysics Ltd., BP Chemicals Ltd., Perkin-Elmer Ltd., and the use of the S.E.R.C. high-field n.m.r. service at Edinburgh.

Received, *31st* March *1987; Corn. 422*

References

- R. N. Perutz and **J.** J. Turner, *J. Am. Chem. Soc.,* 1975,97,4791; **S.** P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, *Inorg. Chem.,* 1985, **24,** 418; J. M. Kelly and R. Bonneau, J. *Am. Chem. SOC.,* 1980, **102,** 1220; H. Hermann, **F.-W.** Grevels, A. Henne, and K. Schaffner, J. *Phys. Chem.,* 1982, **86,** 5151; **A.** J. Lees and **A.** W. Adamson, *Inorg. Chem.,* 1981, 20,4381.
- R. N. Perutz and J. C. Scaiano, J. *Chem. SOC., Chem. Commun.,* 1984, 457; J. Chetwynd-Talbot, P. Grebenik, and R. N. Perutz, *Inorg. Chem.,* 1982, 21, 3647.
- D. M. Haddleton and R. N. Perutz, J. *Chem. SOC., Chem. Commun.,* 1985, 1372.
- D. M. Haddleton, R. N. Perutz, **S.** A. Jackson, R. K. Upmacis, and M. Poliakoff, J. *Organomet. Chem.,* 1986, **311,** C15.
- R. Graham, R. Grinter, D. **M.** Haddleton, and R. N. Perutz, unpublished results.
- D. M. Haddleton and R. N. Perutz, *J. Chem. SOC., Chem. Commun.,* 1986, 1734.
- A. J. Dixon, M. A. Healy, P. M. Hodges, B. D. Moore, M. Poliakoff, M. B. Simpson, J. J. Turner, and M. A. West, J. *Chem. SOC., Faraday Trans.,* 1986, **82,** 2083.
- P. Hofmann and M. Padmanabhan, *Organometallics,* 1983,2, 1273.