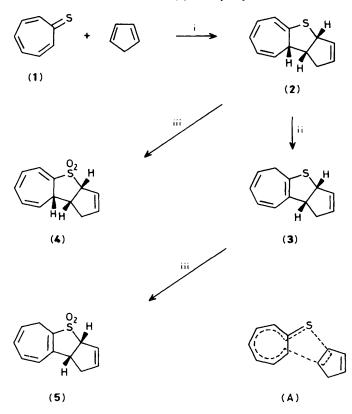
## Cycloaddition Reaction of Cycloheptatrienethione with Cyclopentadiene


## Takahisa Machiguchi,\* Toshio Hasegawa, Hiroyuki Otani, and Yukiko Ishii

Department of Chemistry, College of Liberal Arts and Science, Saitama University, 255 Shimo-Ohkubo, Urawa, Saitama 338, Japan

Cycloheptatrienethione, which is iso- $\pi$ -electronic with tropone, reacts in a concerted manner with cyclopentadiene to give a 1 : 1 [8 + 2]-type adduct; the cyclopentadiene reacts as a  $2\pi$ -component, in contrast with the case of tropone and the reaction mechanism is confirmed by a study of its kinetic behaviour.

We have recently reported<sup>1</sup> the synthesis and isolation of cycloheptatrienethione (1), the sulphur analogue of tropone as a thermally-unstable crystalline material differing sharply in its physical properties from tropone.<sup>2</sup> We now report that, whereas tropone gives a [6 + 4]-type adduct with cyclopentadiene,<sup>3</sup> cycloheptatrienethione, (1), gives an [8 + 2] adduct with high stereo- and regio-specificity.

To a freshly prepared solution of (1) cyclopentadiene in chloroform or dichloromethane was added at room temperature, and the reaction mixture was stirred under a nitrogen atmosphere for 3 h at 40 °C. Removal of the volatile material left a pale brown liquid. Purification gave an adduct (2) (pale yellow needles, m.p. 8.0-10.0 °C; b.p. 52 °C/0.10 mmHg, in 89% yield),† whose structure was determined by n.m.r. spectroscopy using the nuclear Overhauser effect, and by considering all the possible isomers of 1:1 adducts resulting from various combinations of (1) and cyclopentadiene.



Scheme 1. Reagents and conditions: i,  $CHCl_3$ , 40 °C; ii, toluene, reflux, or catalytic amount of  $CF_3CO_2H$ , room temp.; iii, monoperphthalic acid,  $CHCl_3$ , -6 °C.

The adduct (2) decomposes gradually when allowed to stand at room temperature, to form a new isomer (3).\$ Both the products were oxidized, to aid the structural elucidation, with excess of monoperphthalic acid in chloroform at  $-6^{\circ}$ C to give the corresponding thermally stable sulphones (4) (71%) and (5) (86%), respectively.

A kinetic study of the cycloaddition reaction was carried out to establish the reaction mechanism at seven different temperatures in solvents with different polarities under pseudo first-order conditions. The molarity of cyclopentadiene was fixed at 20 times that of (1). The reaction was followed by a decrease in the intensity of the u.v. maximum of (1) at 380 nm.<sup>2</sup> The resulting activation parameters are listed in Table 1. The activation parameters agree closely with those for the cycloaddition of tropone with cyclopentadiene<sup>3d</sup> and the general values found for typical concerted cycloadditions.<sup>4</sup> The values strongly suggest that the reaction proceeds in a concerted manner through the highly oriented compact transition state of a 10 $\pi$  peripheral system (A). The configuration of the adduct (2) implies that the reaction proceeds in a

‡ Satisfactory elemental analyses and spectral data were obtained for all new compounds. Spectroscopic data for (2), i.r.  $v_{max}$ . (neat) 3010m, 2920m, 1580s, and 700vs cm<sup>-1</sup>; u.v.-visible  $\lambda_{max}$ . (EtOH) 239 (log  $\varepsilon$  3.90) and 319 nm (3.58); mass m/z 188 ( $M^+$ , base), 123 (69), 122 (79), 121 (75), and 78 (58); <sup>1</sup>H n.m.r. (100 MHz, CDCl<sub>3</sub>)  $\delta$  2.47–2.78 (3H, m) including signals at 2.60 (1H, ddt, J 8.8, 5.4, 1.0 Hz), 2.70 (2H, ddd, J 6.8, 4.9, 1.5 Hz), 3.32 (1H, dddd, J 8.8, 7.0, 6.8, 4.9 Hz), 4.75 (1H, dddt, J 7.1, 2.0, 1.7, 1.5 Hz), 4.98 (1H, ddd, J 6.0, 2.2, 2.0, 1.7 Hz), 5.90 (1H, dddd, J 6.0, 2.2, 2.0, 1.7 Hz), 5.90 (1H, dddd, J 6.0, 2.2, 2.0, 1.5 Hz), 6.00–6.30 (2H, m), 6.38 (1H, ddd, J 5.9, 1.2, 1.0 Hz), and 6.51 (1H, ddd, J 10.2, 5.9, 1.0 Hz); <sup>13</sup>C n.m.r. (25.1 MHz, CDCl<sub>3</sub>)  $\delta$  34.46 (t), 48.93 (d), 50.49 (d), 60.14 (d), 131.21 (d), 121.89 (d), 125.89 (d), 126.42 (d), 130.76 (d), 131.34 (d), 131.98 (d), and 140.46 (s).

§ Selected spectroscopic data: (**3**), pale yellow liquid, b.p. 85.0 °C/0.13 mmHg, i.r.  $v_{max}$  (neat) 750vs cm<sup>-1</sup>; u.v.-visible  $\lambda_{max}$  (EtOH) 239 (log ε 3.67) and 329 nm (3.41); mass *m*/z 188 (*M*<sup>+</sup>, base), 187 (66), 173 (45), 161 (47), 147 (43), and 128 (27); <sup>1</sup>H n.m.r. (90 MHz, CDCl<sub>3</sub>) 8 2.41 (1H, dddd, *J* 16.5, 5.2, 2.7, 0.7 Hz), 2.41–2.76 (2H, m), 2.76 (1H, ddtd, *J* 16.5, 7.7, 2.3, 2.0 Hz), 3.93 (1H, ddddd, *J* 9.2, 7.7, 2.7, 1.7, 1.1 Hz), 4.75 (1H, ddt, *J* 9.2, 3.9, 2.0 Hz), 5.25 (1H, dtt, *J* 9.5, 4.0, 2.5 Hz), and 6.12–6.28 (2H, m), <sup>13</sup>C n.m.r. (22.5 MHz; CDCl<sub>3</sub>) 8 28.23 (t), 39.34 (t), 53.04 (d), 57.16 (d), 120.33 (d), 127.33 (d), 127.40 (d), 127.87 (d), 128.60 (s), 130.44 (d), 131.36 (d), and 131.90 (s).

(4) Colourless prisms, m.p. 127.0-128.0 °C (MeOH), i.r.  $v_{max}$ . (KBr) 1300vs and 1136vs cm<sup>-1</sup>; mass m/z 220 ( $M^+$ , 2%), 156 (41), 141 (46), 128 (29), 115 (42), 91 (43), and 90 (base).

(5) Colourless prisms, m.p. 126.5—127.5 °C (MeOH), i.r.  $v_{max}$ . (KBr) 1290vs and 1130vs cm<sup>-1</sup>; mass *m/z* 220 (*M*<sup>+</sup>, 14%), 156 (base), 155 (59), 141 (84), 128 (95), and 115 (63).

¶ A sample of the adduct (2) left for a week at room temperature showed an increase in the yield of (3) (58%) with a concurrent decrease of (2) (42%). Refluxing (2) in toluene overnight gave (3) in 53% yield. Similarly the rapid formation of (3) occurred in 48% yield when a small amount of trifluoroacetic acid was added into a reaction mixture.

<sup>&</sup>lt;sup> $\dagger$ </sup> The absence of significant amounts of other products was demonstrated by h.p.l.c. analysis and <sup>1</sup>H n.m.r. spectroscopy during the reactions at 0, 10, 20, and 45 °C. When the adduct (2) was distilled at higher temperatures, partial conversion into (3) occurred.

**Table 1.** Activation parameters for the cycloaddition of cycloheptatrienethione with cyclopentadiene.

| Solvent                       | Chloroform | Benzene |
|-------------------------------|------------|---------|
| $E_{a}^{a}$                   | 11.7       | 11.5    |
| $\log A^{\rm b}$              | 4.56       | 4.13    |
| $\Delta \bar{S}^{\ddagger c}$ | -37.8      | -39.6   |
| $\Delta H^{\ddagger a}$       | 11.1       | 11.0    |
| $\Delta G^{\ddagger a}$       | 22.8       | 23.2    |

<sup>a</sup> Units: kcal mol<sup>-1</sup> (1 kcal = 4.184 kJ). <sup>b</sup> Units: s<sup>-1</sup>. <sup>c</sup> Units. e.u. entropy unit = cal mol<sup>-1</sup>  $K^{-1}$ .

suprafacial-suprafacial manner with *endo* approach. Hence, we can conclude that the formation of the cycloadduct (2) from the reaction of (1) with cyclopentadiene is a concerted  $[\pi 8_s + \pi 2_s]$ -type cycloaddition.

Support of this work by Scientific Grant-in-Aid of the Ministry of Education, Science, and Culture, Japan, as well as

 $\parallel$  An SCF MO calculation has been reported for the molecule (1), which has the largest coefficients at the exocyclic terminal S and the C-2 positions in the HOMO.<sup>5</sup>

the Suntory Institute for Bio-organic Research is gratefully acknowledged.

Received, 22nd April 1987; Com. 541

## References

- 1 For a recent review see, T. Asao and M. Oda, 'Carbocyclische  $\pi$ -Electronen-Systeme,' in 'Houben-Weyl, Methoden der organischen Chemie,' eds. E. Müller and O. Bayer, Georg Thieme Verlag, Stuttgart, 1986, Band 5, Teil 2c, pp. 49–780.
- 2 T. Machiguchi, H. Otani, Y. Ishii, and T. Hasegawa, *Tetrahedron Lett.*, 1987, 203.
- 3 (a) R. C. Cookson, B. V. Drake, J. Hudec, and A. Morrison, J. Chem. Soc., Chem. Commun., 1966, 15; (b) S. Itô, Y. Fujise, T. Okuda, and Y. Inoue, Bull. Chem. Soc. Jpn., 1966, 39, 1351; (c) S. Itô, K. Sakan, and Y. Fujise, Tetrahedron Lett., 1970, 2873; (d) H. Tanida and H. R. Pfaendler, Helv. Chim. Acta, 1972, 55, 3062; (e) J. Haywood-Farmer, B. T. Friedlander, and L. M. Hammond, J. Org. Chem., 1973, 38, 3145.
- 4 J. Sauer and R. Sustmann, Angew. Chem., Int. Ed. Engl., 1980, 19, 779 and references cited therein; (b) A. Wasserman, 'Diels-Alder Reactions,' Elsevier, New York, 1965; (c) S. Itô, A. Mori, Y. Shoji, and H. Takeshita, Tetrahedron Lett., 1972, 2685.
- 5 T. Machiguchi, T. Hoshi, J. Yoshino, and Y. Kitahara, *Tetrahedron Lett.*, 1973, 3873.